Skip to Content
Merck
  • Pinhole micro-SPECT/CT for noninvasive monitoring and quantitation of oncolytic virus dispersion and percent infection in solid tumors.

Pinhole micro-SPECT/CT for noninvasive monitoring and quantitation of oncolytic virus dispersion and percent infection in solid tumors.

Gene therapy (2011-07-15)
A R Penheiter, G E Griesmann, M J Federspiel, D Dingli, S J Russell, S K Carlson
ABSTRACT

The purpose of our study was to validate the ability of pinhole micro-single-photon emission computed tomography/computed tomography (SPECT/CT) to: 1) accurately resolve the intratumoral dispersion pattern and 2) quantify the infection percentage in solid tumors of an oncolytic measles virus encoding the human sodium iodide symporter (MV-NIS). Sodium iodide symporter (NIS) RNA level and dispersion pattern were determined in control and MV-NIS-infected BxPC-3 pancreatic tumor cells and mouse xenografts using quantitative, real-time, reverse transcriptase, polymerase chain reaction, autoradiography and immunohistochemistry (IHC). Mice with BxPC-3 xenografts were imaged with (123)I or (99)TcO(4) micro-SPECT/CT. Tumor dimensions and radionuclide localization were determined with imaging software. Linear regression and correlation analyses were performed to determine the relationship between tumor infection percentage and radionuclide uptake (% injected dose per gram) above background and a highly significant correlation was observed (r(2)=0.947). A detection threshold of 1.5-fold above the control tumor uptake (background) yielded a sensitivity of 2.7% MV-NIS-infected tumor cells. We reliably resolved multiple distinct intratumoral zones of infection from non-infected regions. Pinhole micro-SPECT/CT imaging using the NIS reporter demonstrated precise localization and quantitation of oncolytic MV-NIS infection, and can replace more time-consuming and expensive analyses (for example, autoradiography and IHC) that require animal killing.