Skip to Content
Merck
  • Impact of coccidiosis control program and feeding plan on white striping prevalence and severity degree on broiler breast fillets evaluated at three growing ages.

Impact of coccidiosis control program and feeding plan on white striping prevalence and severity degree on broiler breast fillets evaluated at three growing ages.

Poultry science (2015-07-29)
A Dalle Zotte, G Tasoniero, E Russo, C Longoni, M Cecchinato
ABSTRACT

This study investigated the impact of 2 coccidiosis control systems (vaccine vs anticoccidial) and 2 feeding plans (standard energy vs low energy content, the latter supplemented with threonine and enzymes in the second half of the production cycle) on white striping (WS) prevalence and severity in chicken broiler breasts at commercial slaughter age (51 d). The age of lesion onset was also investigated with the sacrifice of 80 chicks at 12, and 80 chicks at 25 d of age. Seven hundred and twenty ROSS 708 strain male chicks were divided into 4 groups: a non-vaccinated group fed with standard diet (CONTROL); two groups vaccinated against coccidiosis but fed either a standard diet (VACC) or a low-energy diet supplemented with threonine and enzymes (VACC-LE plus); and a fourth group fed a standard diet containing anticoccidial additive except during the finishing period (COX). After live performance, yields, and fillet pH were measured, the breasts were weighed and scored as level 0 (no WS), level 1 (moderate WS), and level 2 (severe WS) at each of the 3 ages; data were covariate for slaughter weight. The results suggest an ameliorative effect of coccidiosis control systems when compared to the control group in terms of live weight, breast yield, and whole breast weight, with heavier fillets characterized by higher pH values. WS appeared at 25 d of age with an average prevalence of 11.5% and with lesions of moderate severity. There were no statistically significant differences due to the experimental treatment at this age. At commercial slaughter age, total average prevalence was 96%, with COX birds showing higher level 2 prevalence (77.6%). This could be related to the higher slaughter weight reached by the COX group (P<0.001) and the treatment effect (P<0.01) that probably adds to the effect of live weight. Diet had no effect on overall live performance of VACC-LE plus chickens, which were similar to those of the VACC group.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Manganese, powder, ≥99.9% trace metals basis
Sigma-Aldrich
Sodium selenite, 99%
Sigma-Aldrich
Manganese, powder, −325 mesh, ≥99% trace metals basis
Sigma-Aldrich
Potassium iodide, ≥99.99% trace metals basis
Sigma-Aldrich
Potassium iodide, AnhydroBeads, −10 mesh, 99.998% trace metals basis
Sigma-Aldrich
Manganese, chips, thickness <2.0 mm, 99%
Sigma-Aldrich
Potassium iodide, BioUltra, ≥99.5% (AT)
Sigma-Aldrich
Potassium iodide, suitable for plant cell culture
Sigma-Aldrich
(±)-α-Tocopherol, synthetic, ≥96% (HPLC)
Sigma-Aldrich
Sodium selenite, γ-irradiated, lyophilized powder, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium selenite, BioReagent, suitable for cell culture, ≥98%
Sigma-Aldrich
Potassium iodide, BioXtra, ≥99.0%
Sigma-Aldrich
α-Tocopherol, ≥95.5%
Sigma-Aldrich
(+)-α-Tocopherol, Type VI, from vegetable oil, liquid (≥0.88M based on potency, density and molecular wt.), BioReagent, suitable for insect cell culture, ≥1000 IU/g
Sigma-Aldrich
(+)-α-Tocopherol, from vegetable oil, Type V, ~1000 IU/g