Skip to Content
Merck
  • Distribution and fate of synthetic musks in the Songhua River, Northeastern China: influence of environmental variables.

Distribution and fate of synthetic musks in the Songhua River, Northeastern China: influence of environmental variables.

Environmental science and pollution research international (2015-04-16)
Binyu Lu, Yujie Feng, Peng Gao, Zhaohan Zhang, Nan Lin
ABSTRACT

Contamination levels and spatial and temporal distributions of six typical synthetic musks (SMs) in water and sediment of the Songhua River in Northeastern China were investigated. Experimental data for 72 water and 52 sediment samples collected at 29 sampling sites over 12 months spanning 2011-2012 showed that the Songhua River had been contaminated to different degrees at various sites separately from the river's source. The polycyclic musks 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-(g)-2-benzopyran (HHCB) (Galaxolide) and 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene (AHTN) (Tonalide) were found most frequently and at the highest levels. Concentrations of HHCB were <2-37 ng/L in water and <0.5-17.5 ng/g dry weight (dw) in sediment. AHTN was <1-8 ng/L in water and <0.5-5.7 ng/g dw in sediment. Statistical relationships between SM concentrations and four environmental variables (temperature, illumination, runoff, and population density) in the Songhua River Basin were formulated. Concentration levels varied proportionately with the size of the city along the river, while the distribution patterns showed clear seasonal variations. HHCB/AHTN ratios mirrored the transfer and transmitting process of SMs. Concentrations of target compounds were correlated with each other, suggesting similar exposure sources. Environmental risk assessment of SMs presented seasonal variations and provided baseline information on SM exposure in the Songhua River Basin.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hexamethylbenzene, purified by sublimation, ≥99%
Sigma-Aldrich
Hexamethylbenzene, 99%