Skip to Content
Merck
  • Genomic Profiling Reveals Unique Molecular Alterations in Hepatoblastomas and Adjacent Hepatocellular Carcinomas in B6C3F1 Mice.

Genomic Profiling Reveals Unique Molecular Alterations in Hepatoblastomas and Adjacent Hepatocellular Carcinomas in B6C3F1 Mice.

Toxicologic pathology (2015-08-21)
Sachin Bhusari, Arun R Pandiri, Hiroaki Nagai, Yu Wang, Julie Foley, Hue-Hua L Hong, Thai-Vu Ton, Michael DeVito, Keith R Shockley, Shyamal D Peddada, Kevin E Gerrish, David E Malarkey, Michelle J Hooth, Robert C Sills, Mark J Hoenerhoff
ABSTRACT

The cell of origin of hepatoblastoma (HB) in humans and mice is unknown; it is hypothesized to be a transformed hepatocyte, oval cell, or hepatic progenitor cell. In mice, current dogma is that HBs arise from preexisting hepatocellular neoplasms as a result of further neoplastic transformation. However, there is little evidence supporting this direct relationship. To better understand the relationship between hepatocellular carcinoma (HCC) and HB and determine molecular similarities between mouse and human HB, global gene expression analysis and targeted mutation analysis were performed using HB, HCC, and adjacent liver from the same animals in a recent National Toxicology Program bioassay. There were significant differences in Hras and Ctnnb1 mutation spectra, and by microarray, HBs showed dysregulation of embryonic development, stem cell pluripotency, and genomic imprinting compared to HCC. Meta-analysis showed similarities between HB, early mouse embryonic liver, and hepatocyte-derived stem/progenitor cells compared to HCC. Our data show that there are striking differences between HB and HCC and suggest that HB is a significantly different entity that may arise from a hepatic precursor cell. Furthermore, mouse HB is similar to the human disease at the pathway level and therefore is likely a relevant model for evaluating human cancer hazard.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Isopropyl alcohol, ≥99.7%, FCC, FG
Sigma-Aldrich
2-Propanol, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
2-Propanol, ACS reagent, ≥99.5%
Sigma-Aldrich
2-Propanol, anhydrous, 99.5%
Sigma-Aldrich
2-Propanol, for molecular biology, BioReagent, ≥99.5%
Sigma-Aldrich
2-Propanol, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Isopropyl alcohol, meets USP testing specifications
Sigma-Aldrich
2-Propanol, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
2-Propanol, ACS reagent, ≥99.5%
Sigma-Aldrich
2-Propanol, puriss. p.a., ACS reagent, ≥99.8% (GC)
Sigma-Aldrich
2-Propanol, ACS reagent, ≥99.5%
Sigma-Aldrich
2-Propanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
2-Propanol, puriss., meets analytical specification of Ph. Eur., BP, USP, ≥99.5% (GC)