Skip to Content
Merck
  • Lipopolysaccharide does not alter small airway reactivity in mouse lung slices.

Lipopolysaccharide does not alter small airway reactivity in mouse lung slices.

PloS one (2015-03-31)
Chantal Donovan, Simon G Royce, Ross Vlahos, Jane E Bourke
ABSTRACT

The bacterial endotoxin, lipopolysaccharide (LPS) has been associated with occupational airway diseases with asthma-like symptoms and in acute exacerbations of COPD. The direct and indirect effects of LPS on small airway reactivity have not been fully elucidated. We tested the hypothesis that both in vitro and in vivo LPS treatment would increase contraction and impair relaxation of mouse small airways. Lung slices were prepared from naïve Balb/C mice and cultured in the absence or presence of LPS (10 μg/ml) for up to 48 h for measurement of TNFα levels in conditioned media. Alternatively, mice were challenged with PBS or LPS in vivo once a day for 4 days for preparation of lung slices or for harvest of lungs for Q-PCR analysis of gene expression of pro-inflammatory cytokines and receptors involved in airway contraction. Reactivity of small airways to contractile agonists, methacholine and serotonin, and bronchodilator agents, salbutamol, isoprenaline and rosiglitazone, were assessed using phase-contrast microscopy. In vitro LPS treatment of slices increased TNFα release 6-fold but did not alter contraction or relaxation to any agonists tested. In vivo LPS treatment increased lung gene expression of TNFα, IL-1β and ryanodine receptor isoform 2 more than 5-fold. However there were no changes in reactivity in lung slices from these mice, even when also incubated with LPS ex vivo. Despite evidence of LPS-induced inflammation, neither airway hyperresponsiveness or impaired dilator reactivity were evident. The increase in ryanodine receptor isoform 2, known to regulate calcium signaling in vascular smooth muscle, warrants investigation. Since LPS failed to elicit changes in small airway reactivity in mouse lung slices following in vitro or in vivo treatment, alternative approaches are required to define the potential contribution of this endotoxin to altered small airway reactivity in human lung diseases.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Prostaglandin E2, ≥93% (HPLC), synthetic
Sigma-Aldrich
Prostaglandin E2, γ-irradiated, powder, BioXtra, suitable for cell culture
Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
Prostaglandin E2, synthetic, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioUltra, for molecular biology, ≥99.5% (T)
Sigma-Aldrich
HEPES, anhydrous, free-flowing, Redi-Dri, ≥99.5%
Sigma-Aldrich
Rosiglitazone, ≥98% (HPLC)
Supelco
HEPES, Pharmaceutical Secondary Standard; Certified Reference Material
Isoprenaline hydrochloride, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
HEPES buffer solution, 1 M in H2O
Sigma-Aldrich
Serotonin hydrochloride, powder
Sigma-Aldrich
Isoprenaline hydrochloride
Dinoprostone, European Pharmacopoeia (EP) Reference Standard