Skip to Content
Merck
  • Short-term transport of glyphosate with erosion in Chinese loess soil--a flume experiment.

Short-term transport of glyphosate with erosion in Chinese loess soil--a flume experiment.

The Science of the total environment (2015-02-04)
Xiaomei Yang, Fei Wang, Célia P M Bento, Sha Xue, Lingtong Gai, Ruud van Dam, Hans Mol, Coen J Ritsema, Violette Geissen
ABSTRACT

Repeated applications of glyphosate may contaminate the soil and water and threaten their quality both within the environmental system and beyond it through water erosion related processes and leaching. In this study, we focused on the transport of glyphosate and its metabolite aminomethylphosphonic acid (AMPA) related to soil erosion at two slope gradients (10 and 20°), two rates of pesticide with a formulation of glyphosate (Roundup®) application (360 and 720 mg m(-2)), and a rain intensity of 1.0 mm min(-1) for 1 h on bare soil in hydraulic flumes. Runoff and erosion rate were significantly different within slope gradients (p<0.05) while suspended load concentration was relatively constant after 15 min of rainfall. The glyphosate and AMPA concentration in the runoff and suspended load gradually decreased. Significant power and exponent function relationship were observed between rainfall duration and the concentration of glyphosate and AMPA (p<0.01) in runoff and suspended load, respectively. Meanwhile, glyphosate and AMPA content in the eroded material depended more on the initial rate of application than on the slope gradients. The transport rate of glyphosate by runoff and suspended load was approximately 14% of the applied amount, and the chemicals were mainly transported in the suspended load. The glyphosate and AMPA content in the flume soil at the end of the experiment decreased significantly with depth (p<0.05), and approximately 72, 2, and 3% of the applied glyphosate (including AMPA) remained in the 0-2, 2-5, and 5-10 cm soil layers, respectively. The risk of contamination in deep soil and the groundwater was thus low, but 5% of the initial application did reach the 2-10 cm soil layer. The risk of contamination of surface water through runoff and sedimentation, however, can be considerable, especially in regions where rain-induced soil erosion is common.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hydrogen chloride solution, 3 M in cyclopentyl methyl ether (CPME)
Sigma-Aldrich
Ammonia solution, 0.4 M in THF
Sigma-Aldrich
Ammonia solution, 4 M in methanol
Sigma-Aldrich
Hydrochloric acid solution, ~6 M in H2O, for amino acid analysis
Supelco
Methanol, analytical standard
Sigma-Aldrich
Ammonium acetate solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Ammonium acetate, 99.999% trace metals basis
Sigma-Aldrich
Ammonia, anhydrous, ≥99.98%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
N-(Phosphonomethyl)glycine, 96%
Supelco
Hydrochloric acid solution, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
Ammonium acetate solution, for molecular biology, 7.5 M
Sigma-Aldrich
N-(Phosphonomethyl)glycine, BioReagent, suitable for plant cell culture
Sigma-Aldrich
Ammonium acetate, for molecular biology, ≥98%
Sigma-Aldrich
Ammonium acetate, reagent grade, ≥98%
Sigma-Aldrich
Ammonium acetate, BioXtra, ≥98%
Sigma-Aldrich
Ammonia-14N, 99.99 atom % 14N
Supelco
Ammonium acetate, LiChropur, eluent additive for LC-MS
Sigma-Aldrich
Hydrochloric acid solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Hydrochloric acid, 36.5-38.0%, BioReagent, for molecular biology
Sigma-Aldrich
Ammonia solution, 0.4 M in dioxane
Supelco
Methanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Hydrogen chloride solution, 1.0 M in acetic acid
Sigma-Aldrich
Hydrochloric acid, ACS reagent, 37%
Sigma-Aldrich
Hydrochloric acid, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., fuming, ≥37%, APHA: ≤10
Sigma-Aldrich
Hydrogen chloride solution, 1.0 M in diethyl ether
Sigma-Aldrich
Hydrochloric acid, ACS reagent, 37%
Sigma-Aldrich
Hydrochloric acid, puriss., 24.5-26.0%
Sigma-Aldrich
Hydrochloric acid, meets analytical specification of Ph. Eur., BP, NF, fuming, 36.5-38%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%