Skip to Content
Merck
  • Enhanced SMAD1 Signaling Contributes to Impairments of Early Development in CFC-iPSCs.

Enhanced SMAD1 Signaling Contributes to Impairments of Early Development in CFC-iPSCs.

Stem cells (Dayton, Ohio) (2015-02-03)
Kyu-Min Han, Seung-Kyoon Kim, Dongkyu Kim, Jung-Yun Choi, Ilkyun Im, Kyu-Seok Hwang, Cheol-Hee Kim, Beom Hee Lee, Han-Wook Yoo, Yong-Mahn Han
ABSTRACT

Cardio-facio-cutaneous (CFC) syndrome is a developmental disorder caused by constitutively active ERK signaling manifesting mainly from BRAF mutations. Little is known about the role of elevated ERK signaling in CFC syndrome during early development. Here, we show that both SMAD1 and ERK signaling pathways may contribute to the developmental defects in CFC syndrome. Induced pluripotent stem cells (iPSCs) derived from dermal fibroblasts of a CFC syndrome patient (CFC-iPSCs) revealed early developmental defects in embryoid body (EB) development, β-catenin localization, and neuronal differentiation. Both SMAD1 and ERK signalings were significantly activated in CFC-iPSCs during EB formation. Most of the β-catenin was dissociated from the membrane and preferentially localized into the nucleus in CFC-EBs. Furthermore, activation of SMAD1 signaling recapitulated early developmental defects in wild-type iPSCs. Intriguingly, inhibition of SMAD1 signaling in CFC-iPSCs rescued aberrant EB morphology, impaired neuronal differentiation, and altered β-catenin localization. These results suggest that SMAD1 signaling may be a key pathway contributing the pathogenesis of CFC syndrome during early development.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium dodecyl sulfate, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
Formaldehyde-12C solution, 20% in H2O, 99.9 atom % 12C
Supelco
Sodium dodecyl sulfate, dust-free pellets, suitable for electrophoresis, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
Vinylene carbonate, contains 80 ppm BHT as stabilizer, 99%
Sigma-Aldrich
BMP-4 human, recombinant, expressed in E. coli, ≥98% (SDS-PAGE), ≥98% (HPLC), suitable for cell culture
Supelco
Sodium dodecyl sulfate, suitable for ion pair chromatography, LiChropur, ≥99.0%
Sigma-Aldrich
Sodium dodecyl sulfate, ≥90% ((Assay))
Sigma-Aldrich
Sodium dodecyl sulfate, BioUltra, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, ACS reagent, ≥99.0%
Sigma-Aldrich
Vinylene carbonate, contains ≤2% BHT as stabilizer, 97%
Sigma-Aldrich
Sodium dodecyl sulfate, ≥98.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, 92.5-100.5% based on total alkyl sulfate content basis
Sigma-Aldrich
Sodium dodecyl sulfate, BioXtra, ≥99.0% (GC)
Sigma-Aldrich
BMP-4 human, recombinant, expressed in HEK 293 cells, ≥95% (SDS-PAGE)
Sigma-Aldrich
Sodium dodecyl sulfate, tested according to NF, mixture of sodium alkyl sulfates consisting mainly of sodium dodecyl sulfate
Sigma-Aldrich
Formaldehyde solution, ACS reagent, 37 wt. % in H2O, contains 10-15% Methanol as stabilizer (to prevent polymerization)
Sigma-Aldrich
Sodium dodecyl sulfate, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, ReagentPlus®, ≥98.5% (GC)
Supelco
Formaldehyde solution, stabilized with methanol, ~37 wt. % in H2O, certified reference material
Sigma-Aldrich
Formaldehyde solution, tested according to Ph. Eur.
Sigma-Aldrich
Formaldehyde solution, meets analytical specification of USP, ≥34.5 wt. %
Sigma-Aldrich
Formaldehyde solution, for molecular biology, BioReagent, ≥36.0% in H2O (T)
Sodium laurilsulfate, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 10% in H2O
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 20% in H2O
Sigma-Aldrich
Triton X-100, laboratory grade
Sigma-Aldrich
BMP-4 mouse, recombinant, expressed in E. coli, ≥98% (SDS-PAGE), ≥98% (HPLC)
Sigma-Aldrich
DAPI, for nucleic acid staining