Skip to Content
Merck
  • The influence of scaffold microstructure on chondrogenic differentiation of mesenchymal stem cells.

The influence of scaffold microstructure on chondrogenic differentiation of mesenchymal stem cells.

Biomedical materials (Bristol, England) (2014-05-14)
Jingjing Zhang, Yingnan Wu, Tanushree Thote, Eng Hin Lee, Zigang Ge, Zheng Yang
ABSTRACT

Different forms of biomaterials, including microspheres, sponges, hydrogels and nanofibres have been broadly used in cartilage regeneration; however, effects of internal structures of biomaterials on chondrogenesis of mesenchymal stem cells (MSCs) remain largely unexplored. Here we investigated the effect of physical microenvironments of sponges and hydrogels on chondrogenic differentiation of MSCs. MSCs, cultured in these two scaffold systems, were induced with TGF-β3 in chondrogeneic differentiation medium and the chondrogenic differentiation was evaluated and compared after three weeks. MSCs in the sponges clustered with spindle morphologies, while they distributed homogenously with round morphologies in the hydrogel. The MSCs proliferated faster in the sponge compared to that in the hydrogel. Significantly higher glycosaminoglycan and collagen II were found in the sponges but not in the hydrogels. The different tissue formation ability of MSCs in these two systems could be attributed to the different metabolic requirements and the cellular events prerequisite in the chondrogenic process of MSCs. It is reasonable to conclude that sponges with relatively active microenvironments that facilitate cell-cell contacts and cell-matrix interaction are optimal for early stage of chondrogeneic differentiation.

MATERIALS
Product Number
Brand
Product Description

Dexamethasone for peak identification, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Sodium pyruvate, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, ≥99%
Sigma-Aldrich
Sodium pyruvate, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99%
Sigma-Aldrich
Sodium pyruvate, Hybri-Max, powder, suitable for hybridoma
Sigma-Aldrich
Sodium pyruvate, ReagentPlus®, ≥99%
Sigma-Aldrich
Thiazolyl Blue Tetrazolium Bromide, 98%
Sigma-Aldrich
Propidium iodide, ≥94.0% (HPLC)
Sigma-Aldrich
Sodium pyruvate, powder, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
Sodium pyruvate, BioXtra, ≥99%
Proline, European Pharmacopoeia (EP) Reference Standard
Dexamethasone, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
DL-Proline, ReagentPlus®, 99%
Supelco
Dexamethasone, VETRANAL®, analytical standard
Sigma-Aldrich
Dexamethasone, tested according to Ph. Eur.
Sigma-Aldrich
Dexamethasone, powder, γ-irradiated, BioXtra, suitable for cell culture, ≥80% (HPLC)
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
Dexamethasone, ≥98% (HPLC), powder
Sigma-Aldrich
Dexamethasone, meets USP testing specifications
Sigma-Aldrich
Dexamethasone, powder, BioReagent, suitable for cell culture, ≥97%
Sigma-Aldrich
Fluorescein diacetate, used as cell viability stain
Supelco
Dexamethasone, Pharmaceutical Secondary Standard; Certified Reference Material
Dexamethasone, British Pharmacopoeia (BP) Assay Standard
Dexamethasone for system suitability, European Pharmacopoeia (EP) Reference Standard