Skip to Content
Merck

Meta-analysis of bonding effectiveness to zirconia ceramics.

Journal of dental research (2014-02-25)
M Inokoshi, J De Munck, S Minakuchi, B Van Meerbeek
ABSTRACT

Dental zirconia can no longer be considered un-bondable to tooth tissue. In literature, an increasing number of papers indeed report on the bonding effectiveness of different luting techniques to zirconia. We aimed to disclose general trends in bonding to zirconia by systematically collecting zirconia bond-strength data. A search in PubMed and EMBASE revealed 1,371 bond-strength tests reported on in 144 papers. A macro-shear bond-strength protocol was most frequently used; it revealed significantly lower bond strengths and was less discriminative than the other test methods. Regarding luting technique, the combination of mechanical and chemical pre-treatment appeared particularly crucial to obtain durable bonding to zirconia ceramics. The cement choice was not revealed as a determining factor after aging conditions, as long as composite cement was used. Regarding test protocol, a tensile test appeared more discriminative, particularly when combined with 'water storage' aging.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Zirconium, foil, thickness 0.1 mm, 99.98% trace metals basis
Sigma-Aldrich
Zirconium, rod, diam. 6.35 mm, ≥99% trace metals basis
Sigma-Aldrich
Zirconium, powder, −100 mesh
Sigma-Aldrich
Zirconium, sponge, ≥99% trace metals basis
Zirconium, wire reel, 1m, diameter 0.5mm, as drawn, 99.2%
Zirconium, wire reel, 0.5m, diameter 0.5mm, as drawn, 99.2%
Sigma-Aldrich
Zirconium, powder, in water, -325 mesh, 99.5% trace metals basis (excluding Hf)
Zirconium, foil, 100x100mm, thickness 0.1mm, annealed, 99.2%
Zirconium, foil, 100x100mm, thickness 0.5mm, annealed, 99.2%
Zirconium, foil, 50x50mm, thickness 0.25mm, annealed, 99.2%
Zirconium, foil, 50x50mm, thickness 0.5mm, annealed, 99.2%
Zirconium, foil, 300x300mm, thickness 0.25mm, annealed, 99.2%
Zirconium, foil, 50x50mm, thickness 0.125mm, annealed, 99.2%
Sigma-Aldrich
Zirconium(IV) oxide, nanopowder, <100 nm particle size (TEM)
Sigma-Aldrich
Zirconium(IV) oxide, powder, 5 μm, 99% trace metals basis
Sigma-Aldrich
Zirconium(IV) oxide, 99.99% trace metals basis (purity excludes ~2% HfO2)
Sigma-Aldrich
Zirconium(IV) oxide, nanoparticles, dispersion, <100 nm particle size (BET), 10 wt. % in H2O
Sigma-Aldrich
Zirconium(IV) oxide, nanoparticles, dispersion, <100 nm particle size (BET), 5 wt. % in H2O