Skip to Content
Merck
  • Transient acidification and subsequent proinflammatory cytokine stimulation of astrocytes induce distinct activation phenotypes.

Transient acidification and subsequent proinflammatory cytokine stimulation of astrocytes induce distinct activation phenotypes.

Journal of cellular physiology (2012-11-17)
Nicole A Renner, Hope A Sansing, Fiona M Inglis, Smriti Mehra, Deepak Kaushal, Andrew A Lackner, Andrew G Maclean
ABSTRACT

The foot processes of astrocytes cover over 60% of the surface of brain microvascular endothelial cells, regulating tight junction integrity. Retraction of astrocyte foot processes has been postulated to be a key mechanism in pathology. Therefore, movement of an astrocyte in response to a proinflammatory cytokine or even limited retraction of processes would result in leaky junctions between endothelial cells. Astrocytes lie at the gateway to the CNS and are instrumental in controlling leukocyte entry. Cultured astrocytes typically have a polygonal morphology until stimulated. We hypothesized that cultured astrocytes which were induced to stellate would have an activated phenotype compared with polygonal cells. We investigated the activation of astrocytes derived from adult macaques to the cytokine TNF-α under resting and stellated conditions by four parameters: morphology, intermediate filament expression, adhesion, and cytokine secretion. Astrocytes were stellated following transient acidification; resulting in increased expression of GFAP and vimentin. Stellation was accompanied by decreased adhesion that could be recovered with proinflammatory cytokine treatment. Surprisingly, there was decreased secretion of proinflammatory cytokines by stellated astrocytes compared with polygonal cells. These results suggest that astrocytes are capable of multiple phenotypes depending on the stimulus and the order stimuli are applied.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
HEPES sodium salt solution, BioReagent, 1M, suitable for cell culture
Sigma-Aldrich
HEPES sodium salt, ≥99.0% (titration)
Sigma-Aldrich
HEPES sodium salt, BioPerformance Certified, suitable for cell culture, ≥99.0%
Sigma-Aldrich
HEPES sodium salt, BioXtra, ≥99.0% (titration)
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
Monoclonal Anti-MAP2 antibody produced in mouse, clone HM-2, ascites fluid
Sigma-Aldrich
HEPES, BioUltra, for molecular biology, ≥99.5% (T)
Sigma-Aldrich
HEPES sodium salt, ≥99.5% (titration), free-flowing, Redi-Dri
Sigma-Aldrich
HEPES solution, BioPerformance Certified, 1 M, suitable for cell culture, 0.2 μm filtered
Sigma-Aldrich
HEPES buffer solution, 1 M in H2O
Sigma-Aldrich
HEPES sodium salt hydrate, ≥99% (titration)
Sigma-Aldrich
HEPES solution, 1 M, pH 7.0-7.6, sterile-filtered, BioReagent, suitable for cell culture