- EXAFS study of Sn(IV) immobilization by hardened cement paste and calcium silicate hydrates.
EXAFS study of Sn(IV) immobilization by hardened cement paste and calcium silicate hydrates.
In this study, the immobilization mechanisms of Sn(IV) onto calcium silicate hydrates (C-S-H) and hardened cement paste (HCP) have been investigated by combining wet chemistry experiments with X-ray absorption spectroscopy (XAS). Evidence is presented which demonstrates the formation of a Sn(IV) inner-sphere surface complex on C-S-H with a CaO/SiO2 weight ratio of 0.7. Two possible structural models, implying a corner sharing between the Sn octahedra and Q1 or Q2b Si tetrahedra, have been developed based on the experimentally determined structural parameters. In HCP, the formation of a different type of Sn(IV) inner-sphere complex has been observed, indicating that C-S-H may not be the uptake-controlling phase for Sn(IV) in the cement matrix. An alternative structural model for Sn(IV) binding in HCP has been developed, assuming that ettringite is the uptake-controlling phase. At high Sn(IV) concentrations, Sn(IV) immobilization in HCP occurs due to the formation of CaSn(OH)6.