Skip to Content
Merck
  • Increased fine particle deposition in women with asymptomatic nonspecific airway hyperresponsiveness.

Increased fine particle deposition in women with asymptomatic nonspecific airway hyperresponsiveness.

American journal of respiratory and critical care medicine (1999-03-02)
M Kohlhäufl, P Brand, G Scheuch, T S Meyer, H Schulz, K Häussinger, J Heyder
ABSTRACT

Previous studies suggest that lung function tests using monodisperse aerosols can help to identify early stages of lung diseases. We investigated intrapulmonary particle loss and aerosol bolus dispersion-a marker of convective gas transport-in 32 women with asymptomatic nonspecific bronchial hyperresponsiveness (BHR) compared with 60 women without BHR. Deposition of inhaled particles (0.9 micrometer mass median aerodynamic diameter [MMAD]) was calculated from particle losses of inhaled aerosol boluses consisting of di-2-ethylhexyl sebacate droplets. Convective gas mixing was assessed by the aerosol bolus dispersion method. Women with BHR, nonsmokers as well as smokers, showed significantly increased deposition of aerosol particles (nonsmokers: 45.6 +/- 8.8%; smokers: 49.2 +/- 5.4%; mean +/- SD) compared with the control group of female nonsmokers without BHR (38.2 +/- 9.1%; mean +/- SD) (p < 0.01). Aerosol bolus dispersion values showed a trend for higher values in subjects with BHR (nonsmokers: 572 +/- 122 cm3; smokers: 587 +/- 85 cm3) compared with the control group (542 +/- 88 cm3) (p = 0.2). Also, the maximal expiratory flow at 25% vital capacity (MEF25) showed a trend for decreased values in nonsmokers with BHR compared with nonsmokers without BHR (64 +/- 16% of predicted versus 78 +/- 24% of predicted; p = 0.03). These results suggest that deposition of inhaled particles (0.9 micrometer MMAD) administered by the aerosol bolus technique is a sensitive index of peripheral lung injury that is usually not assessable by conventional methods.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Bis(2-ethylhexyl) sebacate, technical grade, 90%
Sigma-Aldrich
Bis(2-ethylhexyl) sebacate, ≥97.0% (GC)