Skip to Content
Merck
  • Long non-coding RNA ARHGAP5-AS1 inhibits migration of breast cancer cell via stabilizing SMAD7 protein.

Long non-coding RNA ARHGAP5-AS1 inhibits migration of breast cancer cell via stabilizing SMAD7 protein.

Breast cancer research and treatment (2021-08-10)
Chen-Long Wang, Jing-Chi Li, Ci-Xiang Zhou, Cheng-Ning Ma, Di-Fei Wang, Lu-Lu Wo, Ming He, Qianqian Yin, Jian-Rong He, Qian Zhao
ABSTRACT

Tumor metastasis is the main cause of death from breast cancer patients and cell migration plays a critical role in cancer metastasis. Recent studies have shown long non-coding RNAs (lncRNAs) play an essential role in the initiation and progression of cancer. In the present study, the role of an LncRNA, Rho GTPase Activating Protein 5- Antisense 1 (ARHGAP5-AS1) in breast cancer was investigated. RNA sequencing was performed to find out dysregulated LncRNAs in MDA-MB-231-LM2 cells. Transwell migration assays and F-actin staining were utilized to estimate cell migration ability. RNA pulldown assays and RNA immunoprecipitation were used to prove the interaction between ARHGAP5-AS1 and SMAD7. Western blot and immunofluorescence imaging were used to examine the protein levels. Dual luciferase reporter assays were performed to evaluate the activation of TGF-β signaling. We analyzed the RNA-seq data of MDA-MB-231 and its highly metastatic derivative MDA-MB-231-LM2 cell lines (referred to as LM2) and identified a novel lncRNA (NR_027263) named as ARHGAP5-AS1, which expression was significantly downregulated in LM2 cells. Further functional investigation showed ARHGAP5-AS1 could inhibit cell migration via suppression of stress fibers in breast cancer cell lines. Afterwards, SMAD7 was further identified to interact with ARHGAP5-AS1 by its PY motif and thus its ubiquitination and degradation was blocked due to reduced interaction with E3 ligase SMURF1 and SMURF2. Moreover, ARHGAP5-AS1 could inhibit TGF-β signaling pathway due to its inhibitory role on SMAD7. ARHGAP5-AS1 inhibits breast cancer cell migration via stabilization of SMAD7 protein and could serve as a novel biomarker and a potential target for breast cancer in the future.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Monoclonal ANTI-FLAG® M2 antibody produced in mouse, 1 mg/mL, clone M2, affinity isolated antibody, buffered aqueous solution (50% glycerol, 10 mM sodium phosphate, and 150 mM NaCl, pH 7.4)
Millipore
Protease Inhibitor Cocktail Set III, EDTA-Free, Protease inhibitor cocktail III, EDTA-free for inhibiting aspartic, cysteine, and serine proteases as well as aminopeptidases in mammalian cells and tissues.