Skip to Content
Merck
  • A novel inhibitor of ceramide trafficking from the endoplasmic reticulum to the site of sphingomyelin synthesis.

A novel inhibitor of ceramide trafficking from the endoplasmic reticulum to the site of sphingomyelin synthesis.

The Journal of biological chemistry (2001-09-08)
S Yasuda, H Kitagawa, M Ueno, H Ishitani, M Fukasawa, M Nishijima, S Kobayashi, K Hanada
ABSTRACT

Ceramide produced at the endoplasmic reticulum (ER) is transported to the lumen of the Golgi apparatus for conversion to sphingomyelin (SM). N-(3-Hydroxy-1-hydroxymethyl-3-phenylpropyl)dodecanamide (HPA-12) is a novel analog of ceramide. Metabolic labeling experiments showed that HPA-12 inhibits conversion of ceramide to SM, but not to glucosylceramide, in Chinese hamster ovary cells. Cultivation of cells with HPA-12 significantly reduced the content of SM. HPA-12 did not inhibit the activity of SM synthase. The inhibition of SM formation by HPA-12 was abrogated when the Golgi apparatus was made to merge with the ER by brefeldin A. Moreover, HPA-12 inhibited redistribution of a fluorescent analog of ceramide, N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-d-erythro-sphingosine (C(5)-DMB-Cer), from intracellular membranes to the Golgi region. Among four stereoisomers of the drug, (1R,3S)-HPA-12, [corrected] which resembles natural ceramide stereochemically, was found to be the most active, although (1R,3S)-HPA-12 [corrected] did not affect ER-to-Golgi trafficking of protein. Interestingly, (1R,3S)-HPA-12 [corrected] inhibited conversion of ceramide to SM little in mutant cells defective in an ATP- and cytosol-dependent pathway of ceramide transport. These results indicated that (1R,3S)-HPA-12 [corrected] inhibits ceramide trafficking from the ER to the site of SM synthesis, possibly due to an antagonistic interaction with a ceramide-recognizing factor(s) involved in the ATP- and cytosol-dependent pathway.