- Mechanism of AMPK-mediated apoptosis of rat gastric smooth muscle cells under high glucose condition.
Mechanism of AMPK-mediated apoptosis of rat gastric smooth muscle cells under high glucose condition.
To observe changes in AMP-activated protein kinase (AMPK) activity and phosphorylation changes in AMPK signaling pathway in gastric smooth muscle cells of rats with diabetic gastroparesis (DGP), investigate the effect of AMPK on apoptosis and explore the underlying mechanism. After establishing rat model of DGP, rats were divided into normal control (NC) and DGP groups. The phosphorylation changes in AMPK pathway were detected by AMPK Signaling Phospho-Antibody Array, and the apoptosis-related proteins were determined. Rat gastric smooth muscle cells were cultured in vitro under different glucose conditions, and divided into normal and high glucose groups. The AMPK activity and intracellular Ca2+ changes in cells were observed. After AMPK silencing, cells were divided into high glucose-24h, high glucose-48h and high glucose-48h+siRNA groups. Changes in expression of apoptosis-related proteins were observed. AMPK activity and apoptosis rates were both increased in gastric smooth muscle tissues in DGP rats (P<0.05, P<0.001, respectively). A total of 14 apoptosis-related differentially phosphorylated proteins were identified. Under high-glucose condition, AMPK activity and intracellular Ca2+ concentrations in rat gastric smooth muscle cells were increased (both P<0.05). After AMPK silencing, p53 expression was decreased, Akt and p70 S6 ribosomal protein kinase (p70S6K) activities were were increased, Bcl-2 expression was increased, CaMKII activity was decreased in the high glucose-48h group. Under high-glucose condition, activated AMPK can directly or indirectly promote cells apoptosis by regulating the expression and activity of p53, Akt, p70S6K, Protein kinase A (PKA), Phospholipidol C (PLC)-β3, CaMKII, CaMKIV and eukaryotic translation initiation factor 4E binding protein1 (4E-BP1) in rat gastric smooth muscle cells.