Skip to Content
Merck
  • Application of thermal desorption to the development of a gas chromatographic/mass spectrometric method for the determination of toluene, chlorinated aromatic hydrocarbons, and 2,3,7,8-tetrachlorodibenzo-p-dioxin in combustion emissions.

Application of thermal desorption to the development of a gas chromatographic/mass spectrometric method for the determination of toluene, chlorinated aromatic hydrocarbons, and 2,3,7,8-tetrachlorodibenzo-p-dioxin in combustion emissions.

Journal of AOAC International (2003-02-28)
John D Donaldson, Susan M Grimes, Lina Mehta, Ahmad J Jafari
ABSTRACT

A fast and accurate analytical method, which uses commercially available adsorbents (Tenax TA, Carbotrap B and C, and Carbosieve S-III), was developed for the sampling and determination of aromatic hydrocarbons, chloroaromatic compounds, and 2,3,7,8-tetrachlorodibenzo-p-dioxin. The breakthrough volume data show that Carbotrap C has a good capacity for compounds of high molecular weight, whereas Carbosieve S-III and Tenax TA are efficient for volatile compounds. The organic components are thermally desorbed and transferred to a gas chromatograph/mass spectrometer. Importantly, thermal desorption avoids conventional solvent extraction procedures and also allows reuse of adsorbent tubes. Preliminary results for recovery of analytes from tubes packed with single adsorbent prove that a single-adsorbent bed is not capable of sampling a wide range of compounds. The best method to obtain the desired collection and desorption properties is to use adsorbent tubes containing several different materials. The results of optimization studies are summarized.