Skip to Content
MilliporeSigma
  • Effect of restricted preen-gland access on maternal self maintenance and reproductive investment in mallards.

Effect of restricted preen-gland access on maternal self maintenance and reproductive investment in mallards.

PloS one (2010-11-05)
Mathieu Giraudeau, Gábor Á Czirják, Camille Duval, Vincent Bretagnolle, Cyril Eraud, Kevin J McGraw, Philipp Heeb
ABSTRACT

As egg production and offspring care are costly, females should invest resources adaptively into their eggs to optimize current offspring quality and their own lifetime reproductive success. Parasite infections can influence maternal investment decisions due to their multiple negative physiological effects. The act of preening--applying oils with anti-microbial properties to feathers--is thought to be a means by which birds combat pathogens and parasites, but little is known of how preening during the reproductive period (and its expected disease-protecting effects) influences maternal investment decisions at the level of the egg. Here, we experimentally prevented female mallards (Anas platyrhynchos) from accessing their preen gland during breeding and monitored female immunoresponsiveness (e.g., plasma lysozyme concentration) as well as some egg traits linked to offspring quality (e.g., egg mass, yolk carotenoid content, and albumen lysozyme levels). Females with no access to their preen gland showed an increase in plasma lysozyme level compared to control, normally preening females. In addition, preen-gland-restricted females laid significantly lighter eggs and deposited higher carotenoid concentrations in the yolk compared to control females. Albumen lysozyme activity did not differ significantly between eggs laid by females with or without preen gland access. Our results establish a new link between an important avian self-maintenance behaviour and aspects of maternal health and reproduction. We suggest that higher yolk carotenoid levels in eggs laid by preen-gland-restricted females may serve to boost health of offspring that would hatch in a comparatively microbe-rich environment.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Micrococcus lysodeikticus ATCC No. 4698, suitable for substrate for the assay of lysozyme, lyophilized cells