Skip to Content
MilliporeSigma
  • Use of multiple colorimetric indicators for paper-based microfluidic devices.

Use of multiple colorimetric indicators for paper-based microfluidic devices.

Analytica chimica acta (2010-08-04)
Wijitar Dungchai, Orawon Chailapakul, Charles S Henry
ABSTRACT

We report here the use of multiple indicators for a single analyte for paper-based microfluidic devices (microPAD) in an effort to improve the ability to visually discriminate between analyte concentrations. In existing microPADs, a single dye system is used for the measurement of a single analyte. In our approach, devices are designed to simultaneously quantify analytes using multiple indicators for each analyte improving the accuracy of the assay. The use of multiple indicators for a single analyte allows for different indicator colors to be generated at different analyte concentration ranges as well as increasing the ability to better visually discriminate colors. The principle of our devices is based on the oxidation of indicators by hydrogen peroxide produced by oxidase enzymes specific for each analyte. Each indicator reacts at different peroxide concentrations and therefore analyte concentrations, giving an extended range of operation. To demonstrate the utility of our approach, the mixture of 4-aminoantipyrine and 3,5-dichloro-2-hydroxy-benzenesulfonic acid, o-dianisidine dihydrochloride, potassium iodide, acid black, and acid yellow were chosen as the indicators for simultaneous semi-quantitative measurement of glucose, lactate, and uric acid on a microPAD. Our approach was successfully applied to quantify glucose (0.5-20 mM), lactate (1-25 mM), and uric acid (0.1-7 mM) in clinically relevant ranges. The determination of glucose, lactate, and uric acid in control serum and urine samples was also performed to demonstrate the applicability of this device for biological sample analysis. Finally results for the multi-indicator and single indicator system were compared using untrained readers to demonstrate the improvements in accuracy achieved with the new system.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
o-Dianisidine dihydrochloride, Suitable for use in glucose determination