Skip to Content
MilliporeSigma
  • Determination of polyparameter linear free energy relationship (pp-LFER) substance descriptors for established and alternative flame retardants.

Determination of polyparameter linear free energy relationship (pp-LFER) substance descriptors for established and alternative flame retardants.

Environmental science & technology (2013-01-19)
Angelika Stenzel, Kai-Uwe Goss, Satoshi Endo
ABSTRACT

Polyparameter linear free energy relationships (pp-LFERs) can predict partition coefficients for a multitude of environmental and biological phases with high accuracy. In this work, the pp-LFER substance descriptors of 40 established and alternative flame retardants (e.g., polybrominated diphenyl ethers, hexabromocyclododecane, bromobenzenes, trialkyl phosphates) were determined experimentally. In total, 251 data for gas-chromatographic (GC) retention times and liquid/liquid partition coefficients (K) were measured and used to calibrate the pp-LFER substance descriptors. Substance descriptors were validated through a comparison between predicted and experimental log K for the systems octanol/water (K(ow)), water/air (K(wa)), organic carbon/water (K(oc)) and liposome/water (K(lipw)), revealing a high reliability of pp-LFER predictions based on our descriptors. For instance, the difference between predicted and experimental log K(ow) was <0.3 log units for 17 out of 21 compounds for which experimental values were available. Moreover, we found an indication that the H-bond acceptor value (B) depends on the solvent for some compounds. Thus, for predicting environmentally relevant partition coefficients it is important to determine B values using measurements in aqueous systems. The pp-LFER descriptors calibrated in this study can be used to predict partition coefficients for which experimental data are unavailable, and the predicted values can serve as references for further experimental measurements.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
1-Octanol, JIS special grade, ≥98.0%
Sigma-Aldrich
1-Octanol, SAJ first grade, ≥75.0%
Supelco
1-Octanol, analytical standard
Sigma-Aldrich
1-Octanol, natural, ≥98%, FCC
Sigma-Aldrich
1-Octanol, ≥98%, FCC, FG
Sigma-Aldrich
1-Octanol, anhydrous, ≥99%
Sigma-Aldrich
1-Octanol, ReagentPlus®, 99%
Sigma-Aldrich
1-Octanol, suitable for HPLC, ≥99%
Sigma-Aldrich
1-Octanol, ACS reagent, ≥99%