Skip to Content
MilliporeSigma
  • The effects of choline supplementation in mothers with hypothyroidism on the alteration of cognitive-behavioral, long-term potentiation, morphology, and apoptosis in the hippocampus of pre-pubertal offspring rats.

The effects of choline supplementation in mothers with hypothyroidism on the alteration of cognitive-behavioral, long-term potentiation, morphology, and apoptosis in the hippocampus of pre-pubertal offspring rats.

International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience (2024-02-05)
Siamak Sheikhi, Razieh Aghazadeh, Hojjat Sayyadi, Bagher Pourheydar, Ehsan Saboory, Morteza Bagheri, Leila Derafshpour
ABSTRACT

The mother's thyroid hormone status during gestation and the first few months after delivery can play a crucial role in maturation during the brain development of the child. Transient abnormalities in thyroid function at birth indicate developmental and cognitive disorders in adulthood. Choline supplementation during gestation and the perinatal period in rats causes long-lasting memory improvement in the offspring. However, it remains unclear whether choline is able to restore the deficits in rats with maternal hypothyroidism. The aim of this study was to evaluate the effects of choline supplementation on the alteration of cognitive-behavioral function, long-term potentiation (LTP), and morphological changes as well as apoptosis in pre-pubertal offspring rats. To induce hypothyroidism, 6-propyl-2-thiouracil was added to the drinking water from the 6th day of gestation to the 21st postnatal day (PND). Choline treatment was started twice a day on the first day of the gestation until PND 21 via gavage. LTP recording and Morris water maze (MWM) test were conducted at PND 28. Then, the rats were sacrificed to assess their brains. The results revealed that developmental thyroid hormone deficiency impaired spatial learning and memory and reduced LTP (both: P < 0.001). Choline treatment alleviated LTP (P < 0.001), as well as learning and memory deficits (P < 0.01) in both male and female hypothyroid rats. However, no significant changes were observed in the number of caspase-3 stained cells in choline-receiving hypothyroid groups. The results revealed that developmental thyroid hormone deficiency impaired spatial learning and memory and reduced LTP. Choline treatment alleviated LTP, as well as learning and memory deficits in both male and female hypothyroid rats.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Choline bitartrate