Skip to Content
MilliporeSigma
  • Functional Genomics Identifies Metabolic Vulnerabilities in Pancreatic Cancer.

Functional Genomics Identifies Metabolic Vulnerabilities in Pancreatic Cancer.

Cell metabolism (2020-11-06)
Douglas E Biancur, Kevin S Kapner, Keisuke Yamamoto, Robert S Banh, Jasper E Neggers, Albert S W Sohn, Warren Wu, Robert T Manguso, Adam Brown, David E Root, Andrew J Aguirre, Alec C Kimmelman
ABSTRACT

Pancreatic ductal adenocarcinoma (PDA) is a deadly cancer characterized by complex metabolic adaptations that promote survival in a severely hypoxic and nutrient-limited tumor microenvironment (TME). Modeling microenvironmental influences in cell culture has been challenging, and technical limitations have hampered the comprehensive study of tumor-specific metabolism in vivo. To systematically interrogate metabolic vulnerabilities in PDA, we employed parallel CRISPR-Cas9 screens using in vivo and in vitro systems. This work revealed striking overlap of in vivo metabolic dependencies with those in vitro. Moreover, we identified that intercellular nutrient sharing can mask dependencies in pooled screens, highlighting a limitation of this approach to study tumor metabolism. Furthermore, metabolic dependencies were similar between 2D and 3D culture, although 3D culture may better model vulnerabilities that influence certain oncogenic signaling pathways. Lastly, our work demonstrates the power of genetic screening approaches to define in vivo metabolic dependencies and pathways that may have therapeutic utility.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Monoclonal Anti-β-Actin antibody produced in mouse, clone AC-74, purified immunoglobulin, buffered aqueous solution
Sigma-Aldrich
Conalbumin from chicken egg white, Substantially iron-free
Sigma-Aldrich
Bovine Serum Albumin, lyophilized powder, essentially IgG-free, low endotoxin, BioReagent, suitable for cell culture
Sigma-Aldrich
TAK-475, ≥98% (HPLC)