Skip to Content
MilliporeSigma
  • Role of ceramide in membrane protein organization investigated by combined AFM and FCS.

Role of ceramide in membrane protein organization investigated by combined AFM and FCS.

Biochimica et biophysica acta (2008-03-19)
Salvatore Chiantia, Jonas Ries, Grzegorz Chwastek, Dolores Carrer, Zaiguo Li, Robert Bittman, Petra Schwille
ABSTRACT

Ceramide-induced alterations in the lateral organization of membrane proteins can be involved in several biological contexts, ranging from apoptosis to viral infections. In order to investigate such alterations in a simple model, we used a combined approach of atomic force microscopy, scanning fluorescence correlation spectroscopy and confocal fluorescence imaging to study the partitioning of different membrane components in sphingomyelin/dioleoyl-phosphatidylcholine/cholesterol/ceramide supported bilayers. Such model membranes exhibit coexistence of liquid-disordered, liquid-ordered (raft-like) and ceramide-rich lipid phases. Our results show that components with poor affinity toward the liquid-ordered phase, such as several fluorescent lipid analogues or the synaptic protein Synaptobrevin 2, are excluded from ceramide-rich domains. Conversely, we show for the first time that the raft-associated protein placental alkaline phosphatase (GPI-PLAP) and the ganglioside GM1 are enriched in such domains, while exhibiting a strong decrease in lateral diffusion. Analogue modulation of the local concentration and dynamics of membrane proteins/receptors by ceramide can be of crucial importance for the biological functions of cell membranes.