Skip to Content
MilliporeSigma
All Photos(1)

Documents

N3628

Sigma-Aldrich

4-Nitrophenyl α-L-fuco­pyran­oside

≥98% (TLC), powder

Synonym(s):

4-Nitrophenyl alpha-L-fucopyranoside

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C12H15NO7
CAS Number:
Molecular Weight:
285.25
Beilstein:
89535
EC Number:
MDL number:
UNSPSC Code:
12352204
PubChem Substance ID:
NACRES:
NA.32

product name

4-Nitrophenyl α-L-fuco­pyran­oside, ≥98% (TLC)

Assay

≥98% (TLC)

form

powder

solubility

acetone: 4 mg/mL, clear, colorless

storage temp.

−20°C

SMILES string

C[C@@H]1O[C@@H](OCc2ccc(cc2)[N+]([O-])=O)[C@@H](O)[C@H](O)[C@@H]1O

InChI

1S/C13H17NO7/c1-7-10(15)11(16)12(17)13(21-7)20-6-8-2-4-9(5-3-8)14(18)19/h2-5,7,10-13,15-17H,6H2,1H3/t7-,10+,11+,12-,13+/m0/s1

InChI key

DCCILTHSDFBSCK-RCGNDRPLSA-N

Looking for similar products? Visit Product Comparison Guide

Application

4-Nitrophenyl α-L-fucopyranoside (αfTM) has been used as a chemical substrate for α-fucosidase to determine carbohydrate-active enzymes (CAZymes) activity. It has also been used as a nitrophenyl-linked substrate in p-nitrophenyl glycoside-based enzyme assays to determine the enzyme activity in cecal samples

Biochem/physiol Actions

4-Nitrophenyl α-L-fucopyranoside is a chromogenic substrate that is used in kinetic studies of α-fucosidases.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Mahesh S Desai et al.
Cell, 167(5), 1339-1353 (2016-11-20)
Despite the accepted health benefits of consuming dietary fiber, little is known about the mechanisms by which fiber deprivation impacts the gut microbiota and alters disease risk. Using a gnotobiotic mouse model, in which animals were colonized with a synthetic
Alex Steimle et al.
STAR protocols, 2(1), 100326-100326 (2021-03-06)
The gut microbiome expresses a multitude of enzymes degrading polysaccharides in dietary plant fibers and in host-secreted mucus. The quantitative detection of these glycan-degrading enzymes in fecal samples is important to elucidate the functional activity of the microbiome in health
Erik H Klontz et al.
Nature communications, 11(1), 6204-6204 (2020-12-06)
Fucosylation is important for the function of many proteins with biotechnical and medical applications. Alpha-fucosidases comprise a large enzyme family that recognizes fucosylated substrates with diverse α-linkages on these proteins. Lactobacillus casei produces an α-fucosidase, called AlfC, with specificity towards
M H Tomassi et al.
Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas, 43(1), 8-12 (2009-12-23)
The manner by which effects of simultaneous mutations combine to change enzymatic activity is not easily predictable because these effects are not always additive in a linear manner. Hence, the characterization of the effects of simultaneous mutations of amino acid
Francisco de La Torre et al.
Plant physiology, 128(1), 247-255 (2002-01-15)
An alpha-L-fucosidase (EC 3.2.1.51) able to release the t-fucosyl residue from the side chain of xyloglucan oligosaccharides has been detected in the leaves of Arabidopsis plants. Moreover, an alpha-L-fucosidase with similar substrate specificity was purified from cabbage (Brassica oleracea) leaves

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service