Skip to Content
Merck
  • HSP110 Inhibition in Primary Effusion Lymphoma Cells: One Molecule, Many Pro-Survival Targets.

HSP110 Inhibition in Primary Effusion Lymphoma Cells: One Molecule, Many Pro-Survival Targets.

Cancers (2023-12-09)
Roberta Gonnella, Roberta Zarrella, Michele Di Crosta, Rossella Benedetti, Andrea Arena, Roberta Santarelli, Maria Saveria Gilardini Montani, Gabriella D'Orazi, Mara Cirone
ABSTRACT

Heat shock proteins (HSPs) are highly expressed in cancer cells and represent a promising target in anti-cancer therapy. In this study, we investigated for the first time the expression of high-molecular-weight HSP110, belonging to the HSP70 family of proteins, in Primary Effusion Lymphoma (PEL) and explored its role in their survival. This is a rare lymphoma associated with KSHV, for which an effective therapy remains to be discovered. The results obtained from this study suggest that targeting HSP110 could be a very promising strategy against PEL, as its silencing induced lysosomal membrane permeabilization, the cleavage of BID, caspase 8 activation, downregulated c-Myc, and strongly impaired the HR and NHEJ DNA repair pathways, leading to apoptotic cell death. Since chemical inhibitors of this HSP are not commercially available yet, this study encourages a more intense search in this direction in order to discover a new potential treatment that is effective against this and likely other B cell lymphomas that are known to overexpress HSP110.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Monoclonal Anti-β-Actin antibody produced in mouse, clone AC-15, ascites fluid
Sigma-Aldrich
Anti-Mouse IgG (γ-chain specific)−Peroxidase antibody produced in goat, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
Goat Anti-Rabbit IgG Peroxidase Conjugate, lyophilized, Calbiochem®
Sigma-Aldrich
Anti-BRCA1 (Ab-1) Mouse mAb (MS110), liquid, clone MS110, Calbiochem®
Sigma-Aldrich
c-Myc Inhibitor, The c-Myc Inhibitor, also referenced under CAS 403811-55-2, controls the biological activity of c-Myc.