Saltar al contenido
Merck

Activity of the novel BCR kinase inhibitor IQS019 in preclinical models of B-cell non-Hodgkin lymphoma.

Journal of hematology & oncology (2017-04-01)
P Balsas, A Esteve-Arenys, J Roldán, L Jiménez, V Rodríguez, J G Valero, A Chamorro-Jorganes, R Puig de la Bellacasa, J Teixidó, A Matas-Céspedes, A Moros, A Martínez, E Campo, A Sáez-Borderías, J I Borrell, P Pérez-Galán, D Colomer, G Roué
RESUMEN

Pharmacological inhibition of B cell receptor (BCR) signaling has recently emerged as an effective approach in a wide range of B lymphoid neoplasms. However, despite promising clinical activity of the first Bruton's kinase (Btk) and spleen tyrosine kinase (Syk) inhibitors, a small fraction of patients tend to develop progressive disease after initial response to these agents. We evaluated the antitumor activity of IQS019, a new BCR kinase inhibitor with increased affinity for Btk, Syk, and Lck/Yes novel tyrosine kinase (Lyn), in a set of 34 B lymphoid cell lines and primary cultures, including samples with acquired resistance to the first-in-class Btk inhibitor ibrutinib. Safety and efficacy of the compound were then evaluated in two xenograft mouse models of B cell lymphoma. IQS019 simultaneously engaged a rapid and dose-dependent de-phosphorylation of both constitutive and IgM-activated Syk, Lyn, and Btk, leading to impaired cell proliferation, reduced CXCL12-dependent cell migration, and induction of caspase-dependent apoptosis. Accordingly, B cell lymphoma-bearing mice receiving IQS019 presented a reduced tumor outgrowth characterized by a decreased mitotic index and a lower infiltration of malignant cells in the spleen, in tight correlation with downregulation of phospho-Syk, phospho-Lyn, and phospho-Btk. More interestingly, IQS019 showed improved efficacy in vitro and in vivo when compared to the first-in-class Btk inhibitor ibrutinib, and was active in cells with acquired resistance to this latest. These results define IQS019 as a potential drug candidate for a variety of B lymphoid neoplasms, including cases with acquired resistance to current BCR-targeting therapies.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Histone from calf thymus, Type III-S