Saltar al contenido
Merck
  • Different pathways of molecular pathophysiology underlie cognitive and motor tauopathy phenotypes in transgenic models for Alzheimer's disease and frontotemporal lobar degeneration.

Different pathways of molecular pathophysiology underlie cognitive and motor tauopathy phenotypes in transgenic models for Alzheimer's disease and frontotemporal lobar degeneration.

Cellular and molecular life sciences : CMLS (2014-12-20)
V Melis, C Zabke, K Stamer, M Magbagbeolu, K Schwab, P Marschall, R W Veh, S Bachmann, S Deiana, P-H Moreau, K Davidson, K A Harrington, J E Rickard, D Horsley, R Garman, M Mazurkiewicz, G Niewiadomska, C M Wischik, C R Harrington, G Riedel, F Theuring
RESUMEN

A poorly understood feature of the tauopathies is their very different clinical presentations. The frontotemporal lobar degeneration (FTLD) spectrum is dominated by motor and emotional/psychiatric abnormalities, whereas cognitive and memory deficits are prominent in the early stages of Alzheimer's disease (AD). We report two novel mouse models overexpressing different human tau protein constructs. One is a full-length tau carrying a double mutation [P301S/G335D; line 66 (L66)] and the second is a truncated 3-repeat tau fragment which constitutes the bulk of the PHF core in AD corresponding to residues 296-390 fused with a signal sequence targeting it to the endoplasmic reticulum membrane (line 1; L1). L66 has abundant tau pathology widely distributed throughout the brain, with particularly high counts of affected neurons in hippocampus and entorhinal cortex. The pathology is neuroanatomically static and declines with age. Behaviourally, the model is devoid of a higher cognitive phenotype but presents with sensorimotor impairments and motor learning phenotypes. L1 displays a much weaker histopathological phenotype, but shows evidence of neuroanatomical spread and amplification with age that resembles the Braak staging of AD. Behaviourally, the model has minimal motor deficits but shows severe cognitive impairments affecting particularly the rodent equivalent of episodic memory which progresses with advancing age. In both models, tau aggregation can be dissociated from abnormal phosphorylation. The two models make possible the demonstration of two distinct but nevertheless convergent pathways of tau molecular pathogenesis. L1 appears to be useful for modelling the cognitive impairment of AD, whereas L66 appears to be more useful for modelling the motor features of the FTLD spectrum. Differences in clinical presentation of AD-like and FTLD syndromes are therefore likely to be inherent to the respective underlying tauopathy, and are not dependent on presence or absence of concomitant APP pathology.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Glicina, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
Glicina, suitable for electrophoresis, ≥99%
Sigma-Aldrich
Ácido nítrico, 70%, purified by redistillation, ≥99.999% trace metals basis
Sigma-Aldrich
Suero de cabra
Sigma-Aldrich
Formaldehído solution, for molecular biology, 36.5-38% in H2O
Sigma-Aldrich
Glicina, BioUltra, for molecular biology, ≥99.0% (NT)
Sigma-Aldrich
Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid, for molecular biology, ≥97.0%
Sigma-Aldrich
Glicina, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, ≥98.5%
Sigma-Aldrich
Formaldehído solution, for molecular biology, BioReagent, ≥36.0% in H2O (T)
SAFC
Glicina
Sigma-Aldrich
Formaldehído solution, ACS reagent, 37 wt. % in H2O, contains 10-15% Methanol as stabilizer (to prevent polymerization)
Sigma-Aldrich
Glicina, BioXtra, ≥99% (titration)
Sigma-Aldrich
Formaldehído solution, meets analytical specification of USP, ≥34.5 wt. %
Sigma-Aldrich
Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid, ≥97.0%
Sigma-Aldrich
Glicina, 99%, FCC
Sigma-Aldrich
Ácido nítrico, ACS reagent, ≥90.0%
Sigma-Aldrich
Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid, BioXtra, ≥97 .0%
Sigma-Aldrich
Glicina, SAJ special grade, ≥99.0%
Sigma-Aldrich
Ácido nítrico, 1 M
Sigma-Aldrich
Formaldehído solution, SAJ first grade, ≥35.0%, contains methanol as stabilizer
Sigma-Aldrich
Glicina, ACS reagent, ≥98.5%
Sigma-Aldrich
Formaldehído solution, 10%
Sigma-Aldrich
Ácido nítrico, 0.1 M
Sigma-Aldrich
Formaldehído solution, JIS special grade, 36.0-38.0%, contains methanol as stabilizer
Sigma-Aldrich
Anti-τ (Tau) antibody produced in rabbit, whole antiserum
Sigma-Aldrich
Glicina, meets analytical specification of Ph. Eur., BP, USP, 99-101% (based on anhydrous substance)
Sigma-Aldrich
Formaldehyde-12C solution, 20% in H2O, 99.9 atom % 12C
Sigma-Aldrich
Nitric-14N acid solution, ~10 N in H2O, 99.99 atom % 14N
Sigma-Aldrich
Ácido nítrico, SAJ first grade, 65.0-66.0%, density: 1.40