Saltar al contenido
Merck
  • Comparative toxicity of new halophenolic DBPs in chlorinated saline wastewater effluents against a marine alga: halophenolic DBPs are generally more toxic than haloaliphatic ones.

Comparative toxicity of new halophenolic DBPs in chlorinated saline wastewater effluents against a marine alga: halophenolic DBPs are generally more toxic than haloaliphatic ones.

Water research (2014-08-05)
Jiaqi Liu, Xiangru Zhang
RESUMEN

Using seawater for toilet flushing effectively reduces the consumption of precious freshwater resources, yet it introduces bromide and iodide ions into a wastewater treatment system, which may form bromo- and iodo-disinfection byproducts (DBPs) during chlorination of the wastewater effluent. Most of the newly identified DBPs in chlorinated wastewater effluents were halophenolic compounds. It has been reported that the newly identified bromo- and iodo-phenolic DBPs were generally significantly more toxic to a heterotrophic marine polychaete than the commonly known haloacetic acids and trihalomethanes. This has raised a concern over the discharge of chlorinated saline wastewater effluents into the marine ecosystem. In this study, the toxicity of new halophenolic DBPs and some haloaliphatic DBPs was tested against an autotrophic marine alga, Tetraselmis marina. The alga and polychaete bioassays gave the same toxicity orders for many groups of halo-DBPs. New halophenolic DBPs also showed significantly higher toxicity to the alga than the commonly known haloacetic acids, indicating that the emerging halophenolic DBPs deserve more attention. However, two bioassays did exhibit a couple of disparities in toxicity results, mainly because the alga was capable of metabolizing some (nitrogenous) halophenolic DBPs. A quantitative structure-toxicity relationship was developed for the halophenolic DBPs, by employing three physicochemical descriptors (log K(ow), pKa and molar topological index). This relationship presented the toxicity mechanism of the halophenolic DBPs to T. marina and gave a good prediction of the algal toxicity of the tested halophenolic DBPs.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Acetonitrilo, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acetonitrilo, HPLC Plus, ≥99.9%
Sigma-Aldrich
Terc-butilmetil éter, suitable for HPLC, ≥99.8%
Sigma-Aldrich
Acetonitrilo, ACS reagent, ≥99.5%
Sigma-Aldrich
Terc-butilmetil éter, ACS reagent, ≥99.0%
Sigma-Aldrich
Acetonitrilo, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Terc-butilmetil éter, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
Terc-butilmetil éter, reagent grade, ≥98%
Sigma-Aldrich
Acetonitrilo, anhydrous, 99.8%
Sigma-Aldrich
Acetonitrilo, suitable for HPLC-GC, ≥99.8% (GC)
Sigma-Aldrich
Acetonitrilo, biotech. grade, ≥99.93%
Sigma-Aldrich
Terc-butilmetil éter, puriss. p.a., ≥99.5% (GC)
Sigma-Aldrich
Terc-butilmetil éter, anhydrous, 99.8%
Sigma-Aldrich
Acetonitrilo, suitable for DNA synthesis, ≥99.9% (GC)
Sigma-Aldrich
Acetonitrilo, ReagentPlus®, 99%
Sigma-Aldrich
Acetonitrilo, electronic grade, 99.999% trace metals basis
Supelco
Acetonitrilo, HPLC grade, ≥99.93%
Sigma-Aldrich
Acetonitrilo, ≥99.8%, suitable for HPLC
Supelco
Acetonitrilo, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Terc-butilmetil éter, reagent grade, 98%
Sigma-Aldrich
Acetonitrilo, HPLC Plus, ≥99.9%, poly-coated bottles
USP
Acetonitrilo solution, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Acetonitrilo solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Acetonitrilo, ≥99.8%, for residue analysis, JIS 300
Supelco
Terc-butilmetil éter, HPLC grade, suitable for HPLC, 99.8%
Sigma-Aldrich
Acetonitrilo, JIS special grade, ≥99.5%
Supelco
Acetonitrilo, analytical standard
Supelco
Terc-butilmetil éter, analytical standard
Supelco
Terc-butilmetil éter, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Acetonitrilo, Pharmaceutical Secondary Standard; Certified Reference Material