Saltar al contenido
Merck
  • Synthesis of few-layered MoS₂ nanosheet-coated electrospun SnO₂ nanotube heterostructures for enhanced hydrogen evolution reaction.

Synthesis of few-layered MoS₂ nanosheet-coated electrospun SnO₂ nanotube heterostructures for enhanced hydrogen evolution reaction.

Nanoscale (2014-08-05)
Yunpeng Huang, Yue-E Miao, Longsheng Zhang, Weng Weei Tjiu, Jisheng Pan, Tianxi Liu
RESUMEN

In this work, we report the fabrication of low crystalline, few-layered MoS₂ nanosheet-coated electrospun SnO₂ nanotube (MoS₂/SnO₂) heterostructures with three-dimensional configurations by electrospinning combined with a one-step solvothermal approach. The morphologies and compositions of the as-prepared hybrid nanotubes were characterized by field-emission scanning electron microscopy, transmission electron microscopy, ICP-AES, BET method, X-ray diffraction and X-ray photoelectron spectroscopy. Results show that SnO₂ nanotubes are uniformly covered by sheet-like MoS₂ subunits on both outer and inner surfaces. The electrocatalytic activity of MoS₂/SnO₂ heterostructures towards a hydrogen evolution reaction was examined using linear sweep voltammetry and AC impedance measurements. It is shown that the MoS₂/SnO₂ modified electrode exhibits excellent catalytic activity for hydrogen evolution with low overpotential, a small Tafel slope and high current density.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Hydrazine hydrate solution, puriss. p.a., 24-26% in H2O (RT)
Sigma-Aldrich
Hydrazine monohydrate, N2H4 64-65 %, reagent grade, ≥97%
Sigma-Aldrich
Hydrazine hydrate, reagent grade, N2H4 50-60 %
Sigma-Aldrich
Hydrazine monohydrate, SAJ first grade, ≥98.0%