Saltar al contenido
Merck

Enhancing depression mechanisms in midbrain dopamine neurons achieves homeostatic resilience.

Science (New York, N.Y.) (2014-04-20)
Allyson K Friedman, Jessica J Walsh, Barbara Juarez, Stacy M Ku, Dipesh Chaudhury, Jing Wang, Xianting Li, David M Dietz, Nina Pan, Vincent F Vialou, Rachael L Neve, Zhenyu Yue, Ming-Hu Han
RESUMEN

Typical therapies try to reverse pathogenic mechanisms. Here, we describe treatment effects achieved by enhancing depression-causing mechanisms in ventral tegmental area (VTA) dopamine (DA) neurons. In a social defeat stress model of depression, depressed (susceptible) mice display hyperactivity of VTA DA neurons, caused by an up-regulated hyperpolarization-activated current (I(h)). Mice resilient to social defeat stress, however, exhibit stable normal firing of these neurons. Unexpectedly, resilient mice had an even larger I(h), which was observed in parallel with increased potassium (K(+)) channel currents. Experimentally further enhancing Ih or optogenetically increasing the hyperactivity of VTA DA neurons in susceptible mice completely reversed depression-related behaviors, an antidepressant effect achieved through resilience-like, projection-specific homeostatic plasticity. These results indicate a potential therapeutic path of promoting natural resilience for depression treatment.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Lamotrigine, ≥98%, powder
Supelco
Lamotrigine solution, 1.0 mg/mL in methanol, ampule of 1 mL, certified reference material, Cerilliant®
USP
Lamotrigine, United States Pharmacopeia (USP) Reference Standard
Supelco
Lamotrigine, Pharmaceutical Secondary Standard; Certified Reference Material
Lamotrigine, European Pharmacopoeia (EP) Reference Standard
Lamotrigine for system suitability, European Pharmacopoeia (EP) Reference Standard
Lamotrigine for peak identification, European Pharmacopoeia (EP) Reference Standard