Saltar al contenido
Merck

Direct observation of the nanoscale dynamics of membrane lipids in a living cell.

Nature (2008-12-23)
Christian Eggeling, Christian Ringemann, Rebecca Medda, Günter Schwarzmann, Konrad Sandhoff, Svetlana Polyakova, Vladimir N Belov, Birka Hein, Claas von Middendorff, Andreas Schönle, Stefan W Hell
RESUMEN

Cholesterol-mediated lipid interactions are thought to have a functional role in many membrane-associated processes such as signalling events. Although several experiments indicate their existence, lipid nanodomains ('rafts') remain controversial owing to the lack of suitable detection techniques in living cells. The controversy is reflected in their putative size of 5-200 nm, spanning the range between the extent of a protein complex and the resolution limit of optical microscopy. Here we demonstrate the ability of stimulated emission depletion (STED) far-field fluorescence nanoscopy to detect single diffusing (lipid) molecules in nanosized areas in the plasma membrane of living cells. Tuning of the probed area to spot sizes approximately 70-fold below the diffraction barrier reveals that unlike phosphoglycerolipids, sphingolipids and glycosylphosphatidylinositol-anchored proteins are transiently ( approximately 10-20 ms) trapped in cholesterol-mediated molecular complexes dwelling within <20-nm diameter areas. The non-invasive optical recording of molecular time traces and fluctuation data in tunable nanoscale domains is a powerful new approach to study the dynamics of biomolecules in living cells.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Atto 647N NHS ester, BioReagent, suitable for fluorescence, ≥90% (HPLC)
Supelco
Atto 647N, BioReagent, suitable for fluorescence, ≥90.0% (HPLC)
Supelco
Atto 647N maleimide, BioReagent, suitable for fluorescence, ≥90% (HPLC)
Sigma-Aldrich
Atto 647N-Biotin, BioReagent, suitable for fluorescence, ≥90.0% (HPLC)
Sigma-Aldrich
Atto 647N azide, BioReagent, suitable for fluorescence
Sigma-Aldrich
Atto 647N amine, BioReagent, suitable for fluorescence