Saltar al contenido
Merck

Lipoteichoic acid is an important microbe-associated molecular pattern of Lactobacillus rhamnosus GG.

Microbial cell factories (2012-12-18)
Ingmar J J Claes, Marijke E Segers, Tine L A Verhoeven, Michiel Dusselier, Bert F Sels, Sigrid C J De Keersmaecker, Jos Vanderleyden, Sarah Lebeer
RESUMEN

Probiotic bacteria are increasingly used as immunomodulatory agents. Yet detailed molecular knowledge on the immunomodulatory molecules of these bacteria is lagging behind. Lipoteichoic acid (LTA) is considered a major microbe-associated molecular pattern (MAMP) of Gram-positive bacteria. However, many details and quantitative data on its immune signalling capacity are still unknown, especially in beneficial bacteria. Recently, we have demonstrated that a dltD mutant of the model probiotic Lactobacillus rhamnosus GG (LGG), having modified LTA molecules, has an enhanced probiotic efficacy in a DSS-induced colitis model as compared to wild-type. In this study, the importance of D-alanylated and acylated LTA for the pro-inflammatory activity of LGG was studied in vitro. Purified native LTA of LGG wild-type exhibited a concentration-dependent activation of NF-κB signalling in HEK293T cells after interaction with TLR2/6, but not with TLR2 alone. Chemical deacylation of LTA interfered with the TLR2/6 interaction, while a moderate effect was observed with chemical dealanylation. Similarly, the dltD mutant of LGG exhibited a significantly reduced capacity to activate TLR2/6-dependent NF-κB signalling in a HEK293T reporter cell line compared to wild-type. In addition, the dltD mutant of LGG showed a reduced induction of mRNA of the chemokine IL-8 in the Caco-2 epithelial cell line compared to wild-type. Experiments with highly purified LTA of LGG confirmed that LTA is a crucial factor for IL-8 mRNA induction in Caco-2 epithelial cells. Chemical dealanylation and deacylation reduced IL-8 mRNA expression. Taken together, our results indicate that LTA of LGG is a crucial MAMP with pro-inflammatory activities such as IL-8 induction in intestinal epithelial cells and NF-κB induction in HEK293T cells via TLR2/6 interaction. The lipid chains of LGG LTA are needed for these activities, while also the D-alanine substituents are important, especially for IL-8 induction in Caco-2 cells.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Lipoteichoic acid from Staphylococcus aureus, bacterial cell wall polymer
Sigma-Aldrich
Lipoteichoic acid from Bacillus subtilis
Sigma-Aldrich
Lipoteichoic acid from Streptococcus pyogenes