Saltar al contenido
Merck

Interactions between TULP3 tubby domain and ARL13B amphipathic helix promote lipidated protein transport to cilia.

Molecular biology of the cell (2023-01-19)
Vivek Reddy Palicharla, Sun-Hee Hwang, Bandarigoda N Somatilaka, Emilie Legué, Issei S Shimada, Nicole E Familiari, Vanna M Tran, Jeffrey B Woodruff, Karel F Liem, Saikat Mukhopadhyay
RESUMEN

The primary cilium is a nexus for cell signaling and relies on specific protein trafficking for function. The tubby family protein TULP3 transports integral membrane proteins into cilia through interactions with the intraflagellar transport complex-A (IFT-A) and phosphoinositides. It was previously shown that short motifs called ciliary localization sequences (CLSs) are necessary and sufficient for TULP3-dependent ciliary trafficking of transmembrane cargoes. However, the mechanisms by which TULP3 regulates ciliary compartmentalization of nonintegral, membrane-associated proteins and whether such trafficking requires TULP3-dependent CLSs is unknown. Here we show that TULP3 is required for ciliary transport of the Joubert syndrome-linked palmitoylated GTPase ARL13B through a CLS. An N-terminal amphipathic helix, preceding the GTPase domain of ARL13B, couples with the TULP3 tubby domain for ciliary trafficking, irrespective of palmitoylation. ARL13B transport requires TULP3 binding to IFT-A but not to phosphoinositides, indicating strong membrane-proximate interactions, unlike transmembrane cargo transport requiring both properties of TULP3. TULP3-mediated trafficking of ARL13B also regulates ciliary enrichment of farnesylated and myristoylated downstream effectors of ARL13B. The lipidated cargoes show distinctive depletion kinetics from kidney epithelial cilia with relation to Tulp3 deletion-induced renal cystogenesis. Overall, these findings indicate an expanded role of the tubby domain in capturing analogous helical secondary structural motifs from diverse cargoes.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Monoclonal Anti-Tubulin, Acetylated antibody produced in mouse, clone 6-11B-1, ascites fluid
Sigma-Aldrich
Monoclonal Anti-Glutathione-S-Transferase (GST) antibody produced in mouse, clone GST-2, ascites fluid
Sigma-Aldrich
Anti-Water Channel Aquaporin 2 antibody produced in rabbit, IgG fraction of antiserum, lyophilized powder
Sigma-Aldrich
Anti-S•Tag fusion protein Antibody, clone 26A4.1.2, from mouse