Skip to Content
Merck
  • The unfolded protein response governs integrity of the haematopoietic stem-cell pool during stress.

The unfolded protein response governs integrity of the haematopoietic stem-cell pool during stress.

Nature (2014-04-30)
Peter van Galen, Antonija Kreso, Nathan Mbong, David G Kent, Timothy Fitzmaurice, Joseph E Chambers, Stephanie Xie, Elisa Laurenti, Karin Hermans, Kolja Eppert, Stefan J Marciniak, Jane C Goodall, Anthony R Green, Bradly G Wouters, Erno Wienholds, John E Dick
ABSTRACT

The blood system is sustained by a pool of haematopoietic stem cells (HSCs) that are long-lived due to their capacity for self-renewal. A consequence of longevity is exposure to stress stimuli including reactive oxygen species (ROS), nutrient fluctuation and DNA damage. Damage that occurs within stressed HSCs must be tightly controlled to prevent either loss of function or the clonal persistence of oncogenic mutations that increase the risk of leukaemogenesis. Despite the importance of maintaining cell integrity throughout life, how the HSC pool achieves this and how individual HSCs respond to stress remain poorly understood. Many sources of stress cause misfolded protein accumulation in the endoplasmic reticulum (ER), and subsequent activation of the unfolded protein response (UPR) enables the cell to either resolve stress or initiate apoptosis. Here we show that human HSCs are predisposed to apoptosis through strong activation of the PERK branch of the UPR after ER stress, whereas closely related progenitors exhibit an adaptive response leading to their survival. Enhanced ER protein folding by overexpression of the co-chaperone ERDJ4 (also called DNAJB9) increases HSC repopulation capacity in xenograft assays, linking the UPR to HSC function. Because the UPR is a focal point where different sources of stress converge, our study provides a framework for understanding how stress signalling is coordinated within tissue hierarchies and integrated with stemness. Broadly, these findings reveal that the HSC pool maintains clonal integrity by clearance of individual HSCs after stress to prevent propagation of damaged stem cells.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Tunicamycin from Streptomyces sp.
Sigma-Aldrich
Thapsigargin, ≥98% (HPLC), solid film
Sigma-Aldrich
PERK Inhibitor I, GSK2606414, GSK2606414 is a cell-permeable, highly potent inhibitor of EIF2AK3/PERK (IC₅₀ = 0.4 nM; [ATP] = 5 µM). Targets PERK in its inactive DFG conformation at the ATP-binding region.