Skip to Content
Merck

The SARS-CoV-2 spike protein binds and modulates estrogen receptors.

Science advances (2022-12-01)
Oscar Solis, Andrea R Beccari, Daniela Iaconis, Carmine Talarico, Camilo A Ruiz-Bedoya, Jerome C Nwachukwu, Annamaria Cimini, Vanessa Castelli, Riccardo Bertini, Monica Montopoli, Veronica Cocetta, Stefano Borocci, Ingrid G Prandi, Kelly Flavahan, Melissa Bahr, Anna Napiorkowski, Giovanni Chillemi, Masato Ooka, Xiaoping Yang, Shiliang Zhang, Menghang Xia, Wei Zheng, Jordi Bonaventura, Martin G Pomper, Jody E Hooper, Marisela Morales, Avi Z Rosenberg, Kendall W Nettles, Sanjay K Jain, Marcello Allegretti, Michael Michaelides
ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein binds angiotensin-converting enzyme 2 as its primary infection mechanism. Interactions between S and endogenous proteins occur after infection but are not well understood. We profiled binding of S against >9000 human proteins and found an interaction between S and human estrogen receptor α (ERα). Using bioinformatics, supercomputing, and experimental assays, we identified a highly conserved and functional nuclear receptor coregulator (NRC) LXD-like motif on the S2 subunit. In cultured cells, S DNA transfection increased ERα cytoplasmic accumulation, and S treatment induced ER-dependent biological effects. Non-invasive imaging in SARS-CoV-2-infected hamsters localized lung pathology with increased ERα lung levels. Postmortem lung experiments from infected hamsters and humans confirmed an increase in cytoplasmic ERα and its colocalization with S in alveolar macrophages. These findings describe the discovery of a S-ERα interaction, imply a role for S as an NRC, and advance knowledge of SARS-CoV-2 biology and coronavirus disease 2019 pathology.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Raloxifene hydrochloride, solid