Skip to Content
Merck
  • Self-assembled multifunctional neural probes for precise integration of optogenetics and electrophysiology.

Self-assembled multifunctional neural probes for precise integration of optogenetics and electrophysiology.

Nature communications (2021-10-09)
Liang Zou, Huihui Tian, Shouliang Guan, Jianfei Ding, Lei Gao, Jinfen Wang, Ying Fang
ABSTRACT

Optogenetics combined with electrical recording has emerged as a powerful tool for investigating causal relationships between neural circuit activity and function. However, the size of optogenetically manipulated tissue is typically 1-2 orders of magnitude larger than that can be electrically recorded, rendering difficulty for assigning functional roles of recorded neurons. Here we report a viral vector-delivery optrode (VVD-optrode) system for precise integration of optogenetics and electrophysiology in the brain. Our system consists of flexible microelectrode filaments and fiber optics that are simultaneously self-assembled in a nanoliter-scale, viral vector-delivery polymer carrier. The highly localized delivery and neuronal expression of opsin genes at microelectrode-tissue interfaces ensure high spatial congruence between optogenetically manipulated and electrically recorded neuronal populations. We demonstrate that this multifunctional system is capable of optogenetic manipulation and electrical recording of spatially defined neuronal populations for three months, allowing precise and long-term studies of neural circuit functions.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-GFAP antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution
Sigma-Aldrich
Anti-NeuN Antibody, clone A60, clone A60, Chemicon®, from mouse