- The INO80 chromatin remodeling complex promotes thermomorphogenesis by connecting H2A.Z eviction and active transcription in Arabidopsis.
The INO80 chromatin remodeling complex promotes thermomorphogenesis by connecting H2A.Z eviction and active transcription in Arabidopsis.
Global warming poses a major threat to plant growth and crop production. In some plants, including Arabidopsis thaliana, elevated temperatures induce a series of morphological and developmental adjustments termed thermomorphogenesis, which facilitates plant cooling under high-temperature conditions. Plant thermal response is suppressed by histone variant H2A.Z. At warm temperatures, H2A.Z is evicted from nucleosomes at thermoresponsive genes, resulting in changes in their expression. However, the mechanisms that regulate H2A.Z eviction and subsequent transcriptional changes are largely unknown. Here, we show that the INO80 chromatin remodeling complex (INO80-C) promotes thermomorphogenesis and activates the expression of thermoresponsive and auxin-related genes. INO80-C associates with PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), a potent regulator of thermomorphogenesis, and mediates temperature-induced H2A.Z eviction at PIF4 targets. Moreover, INO80-C directly interacts with COMPASS-like and transcription elongation factors to promote active histone modification, histone H3 lysine 4 trimethylation, and RNA polymerase II elongation, leading to the thermal induction of transcription. Notably, the transcription elongation factors SPT4 and SPT5 are required for H2A.Z eviction at PIF4 targets, suggesting the cooperation of INO80-C and transcription elongation in H2A.Z removal. Taken together, these results suggest that the (PIF4)-(INO80-C)-(COMPASS-like)-(transcription elongator) module controls plant thermal response, thereby establishing a link between H2A.Z eviction and active transcription.