- Antifouling gold surfaces grafted with aspartic acid and glutamic acid based zwitterionic polymer brushes.
Antifouling gold surfaces grafted with aspartic acid and glutamic acid based zwitterionic polymer brushes.
We report two new amino acid based antifouling zwitterionic polymers, poly(N(4)-(2-methacrylamidoethyl)asparagine) (pAspAA) and poly(N(5)-(2-methacrylamidoethyl)glutamine) (pGluAA). The vinyl monomers were developed from aspartic acid and glutamic acid. Surface-initiated photoiniferter-mediated polymerization was employed to graft polymer brushes from gold surfaces. Different thickness of polymer brushes was controlled by varying UV irradiation time. The nonspecific adsorption from undiluted human blood serum and plasma was studied by surface plasmon resonance (SPR). With the polymer film as thin as 11-12 nm, the adsorption on pAspAA from serum and plasma was as low as 0.75 and 5.18 ng/cm(2), respectively, and 1.88 and 10.15 ng/cm(2), respectively, for pGluAA. The adsorption amount is comparable to or even better than other amino acid based zwitterionic polymers such as poly(serine methacrylate), poly(lysine methacrylamide), and poly(ornithine methacrylamide) and other widely used antifouling polymers such as poly(sulfobetaine methacrylate), even under thinner polymer film thickness. The pAspAA and pGluAA grafted surfaces also showed strong resistance to endothelial cell attachment. The possession of both zwitterionic structure and hydrophilic amide groups, biomimetic property, and multifunctionality make pAspAA and pGluAA promising candidates for biocompatible antifouling functionalizable materials.