Saltar al contenido
MilliporeSigma

Rapid increase in fibroblast growth factor 21 in protein malnutrition and its impact on growth and lipid metabolism.

The British journal of nutrition (2015-09-04)
Yori Ozaki, Kenji Saito, Kyoko Nakazawa, Morichika Konishi, Nobuyuki Itoh, Fumihiko Hakuno, Shin-Ichiro Takahashi, Hisanori Kato, Asako Takenaka
RESUMEN

Protein malnutrition promotes hepatic steatosis, decreases insulin-like growth factor (IGF)-I production and retards growth. To identify new molecules involved in such changes, we conducted DNA microarray analysis on liver samples from rats fed an isoenergetic low-protein diet for 8 h. We identified the fibroblast growth factor 21 gene (Fgf21) as one of the most strongly up-regulated genes under conditions of acute protein malnutrition (P<0·05, false-discovery rate<0·001). In addition, amino acid deprivation increased Fgf21 mRNA levels in rat liver-derived RL-34 cells (P<0·01). These results suggested that amino acid limitation directly increases Fgf21 expression. FGF21 is a polypeptide hormone that regulates glucose and lipid metabolism. FGF21 also promotes a growth hormone-resistance state and suppresses IGF-I in transgenic mice. Therefore, to determine further whether Fgf21 up-regulation causes hepatic steatosis and growth retardation after IGF-I decrease in protein malnutrition, we fed an isoenergetic low-protein diet to Fgf21-knockout (KO) mice. Fgf21-KO did not rescue growth retardation and reduced plasma IGF-I concentration in these mice. Fgf21-KO mice showed greater epididymal white adipose tissue weight and increased hepatic TAG and cholesterol levels under protein malnutrition conditions (P<0·05). Overall, the results showed that protein deprivation directly increased Fgf21 expression. However, growth retardation and decreased IGF-I were not mediated by increased FGF21 expression in protein malnutrition. Furthermore, FGF21 up-regulation rather appears to have a protective effect against obesity and hepatic steatosis in protein-malnourished animals.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Colesterol, Sigma Grade, ≥99%
Sigma-Aldrich
Colesterol, powder, BioReagent, suitable for cell culture, ≥99%
Sigma-Aldrich
Colesterol, from sheep wool, ≥92.5% (GC), powder
Sigma-Aldrich
SyntheChol® NS0 Supplement, 500 ×, synthetic cholesterol, animal component-free, aqueous solution, sterile-filtered, suitable for cell culture
Supelco
Cholesterol solution, certified reference material, 10 mg/mL in chloroform
SAFC
Colesterol, derivado vegetal, SyntheChol®
SAFC
Colesterol, from sheep wool, Controlled origin, meets USP/NF testing specifications