Saltar al contenido
MilliporeSigma
  • Factors affecting fluoride and natural organic matter (NOM) removal from natural waters in Tanzania by nanofiltration/reverse osmosis.

Factors affecting fluoride and natural organic matter (NOM) removal from natural waters in Tanzania by nanofiltration/reverse osmosis.

The Science of the total environment (2015-05-26)
Junjie Shen, Andrea I Schäfer
RESUMEN

This study examined the feasibility of nanofiltration (NF) and reverse osmosis (RO) in treating challenging natural tropical waters containing high fluoride and natural organic matter (NOM). A total of 166 water samples were collected from 120 sources within northern Tanzania over a period of 16 months. Chemical analysis showed that 81% of the samples have fluoride levels exceeding the WHO drinking guideline of 1.5mg/L. The highest fluoride levels were detected in waters characterized by high ionic strength, high inorganic carbon and on some occasions high total organic carbon (TOC) concentrations. Bench-scale experiments with 22 representative waters (selected based on fluoride concentration, salinity, origin and in some instances organic matter) and 6 NF/RO membranes revealed that ionic strength and recovery affected fluoride retention and permeate flux. This is predominantly due to osmotic pressure and hence the variation of diffusion/convection contributes to fluoride transport. Different membranes had distinct fluoride removal capacities, showing different raw water concentration treatability limits regarding the WHO guideline compliance. BW30, BW30-LE and NF90 membranes had a feed concentration limit of 30-40 mg/L at 50% recovery. NOM retention was independent of water matrices but is governed predominantly by size exclusion. NOM was observed to have a positive impact on fluoride removal. Several mechanisms could contribute but further studies are required before a conclusion could be drawn. In summary, NF/RO membranes were proved to remove both fluoride and NOM reliably even from the most challenging Tanzanian waters, increasing the available drinking water sources.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Hidróxido de sodio solution, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
Cloruro de sodio, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Hidróxido de sodio solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Cloruro de sodio, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Hidróxido de sodio solution, 0.1 M
Sigma-Aldrich
Cloruro de sodio, JIS special grade, ≥99.5%
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Hidróxido de sodio solution, 1 M
Sigma-Aldrich
Cloruro de sodio, 99.999% trace metals basis
Sigma-Aldrich
Ácido acético, for luminescence, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Cloruro de sodio, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Ácido acético, ≥99.5%, FCC, FG
Sigma-Aldrich
Hidróxido de sodio, BioUltra, for luminescence, ≥98.0% (T), pellets
Sigma-Aldrich
Ácido acético, natural, ≥99.5%, FG
Sigma-Aldrich
5α-Androstan-17β-ol-3-one, ≥97.5%
Sigma-Aldrich
Hidróxido de sodio, JIS special grade, ≥96.0%
Sigma-Aldrich
Hidróxido de sodio, SAJ first grade, ≥95.0%
Sigma-Aldrich
Cloruro de sodio, SAJ first grade, ≥99.0%
Sigma-Aldrich
Ácido acético, ≥99.7%
Sigma-Aldrich
Ácido acético, JIS special grade, ≥99.7%
Sigma-Aldrich
Hidróxido de sodio, ultra dry, powder or crystals, 99.99% trace metals basis
Sigma-Aldrich
Cloruro de sodio, BioXtra, ≥99.5% (AT)