Saltar al contenido
MilliporeSigma

Evaluation of injection methods for fast, high peak capacity separations with low thermal mass gas chromatography.

Journal of chromatography. A (2015-03-31)
Brian D Fitz, Brandyn C Mannion, Khang To, Trinh Hoac, Robert E Synovec
RESUMEN

Low thermal mass gas chromatography (LTM-GC) was evaluated for rapid, high peak capacity separations with three injection methods: liquid, headspace solid phase micro-extraction (HS-SPME), and direct vapor. An Agilent LTM equipped with a short microbore capillary column was operated at a column heating rate of 250 °C/min to produce a 60s separation. Two sets of experiments were conducted in parallel to characterize the instrumental platform. First, the three injection methods were performed in conjunction with in-house built high-speed cryo-focusing injection (HSCFI) to cryogenically trap and re-inject the analytes onto the LTM-GC column in a narrower band. Next, the three injection methods were performed natively with LTM-GC. Using HSCFI, the peak capacity of a separation of 50 nl of a 73 component liquid test mixture was 270, which was 23% higher than without HSCFI. Similar peak capacity gains were obtained when using the HSCFI with HS-SPME (25%), and even greater with vapor injection (56%). For the 100 μl vapor sample injected without HSCFI, the preconcentration factor, defined as the ratio of the maximum concentration of the detected analyte peak relative to the analyte concentration injected with the syringe, was determined to be 11 for the earliest eluting peak (most volatile analyte). In contrast, the preconcentration factor for the earliest eluting peak using HSCFI was 103. Therefore, LTM-GC is demonstrated to natively provide in situ analyte trapping, although not to as great an extent as with HSCFI. We also report the use of LTM-GC applied with time-of-flight mass spectrometry (TOFMS) detection for rapid, high peak capacity separations from SPME sampled banana peel headspace.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Acetona, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetona, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acetona, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Tolueno, ACS reagent, ≥99.5%
Sigma-Aldrich
Cloroformo, contains 100-200 ppm amylenes as stabilizer, ≥99.5%
Sigma-Aldrich
Heptano, suitable for HPLC, ≥99%
Sigma-Aldrich
Xilenos, histological grade
Sigma-Aldrich
Cloroformo, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains amylenes as stabilizer
Sigma-Aldrich
Heptano, ReagentPlus®, 99%
Sigma-Aldrich
Tolueno, suitable for HPLC, 99.9%
Sigma-Aldrich
Cloroformo, suitable for HPLC, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Hexano, suitable for HPLC, ≥97.0% (GC)
Sigma-Aldrich
1-Propanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Tolueno, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Xilenos, ACS reagent, ≥98.5% xylenes + ethylbenzene basis
Sigma-Aldrich
Hexano, ReagentPlus®, ≥99%
Sigma-Aldrich
Hexano, suitable for HPLC, ≥95%
Sigma-Aldrich
Acetona, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
Ciclohexano, ACS reagent, ≥99%
Sigma-Aldrich
2-Butanona, ACS reagent, ≥99.0%
Sigma-Aldrich
Cloroformo, contains ethanol as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
Benceno, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Benceno, ACS reagent, ≥99.0%
Sigma-Aldrich
Hexano, Laboratory Reagent, ≥95%
Sigma-Aldrich
Ciclohexano, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Tolueno, anhydrous, 99.8%
Sigma-Aldrich
Hexano, HPLC Plus, for HPLC, GC, and residue analysis, ≥95%
Sigma-Aldrich
1-Propanol, ACS reagent, ≥99.5%
Sigma-Aldrich
Hexano, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99% (GC)
Sigma-Aldrich
Heptano, HPLC Plus, for HPLC, GC, and residue analysis, 99%