Saltar al contenido
MilliporeSigma

Biosynthesis of novel exopolymers by Aureobasidium pullulans.

Applied and environmental microbiology (1999-12-03)
J W Lee, W G Yeomans, A L Allen, F Deng, R A Gross, D L Kaplan
RESUMEN

Aureobasidium pullulans ATCC 42023 was cultured under aerobic conditions with glucose, mannose, and glucose analogs as energy sources. The exopolymer extracts produced under these conditions were composed of glucose and mannose. The molar ratio of glucose to mannose in the exopolymer extract and the molecular weight of the exopolymer varied depending on the energy source and culture time. The glucose content of exopolymer extracts formed with glucose and mannose as the carbon sources was between 91 and 87%. The molecular weight decreased from 3.5 x 10(6) to 2.12 x 10(6) to 0.85 x 10(6) to 0.77 x 10(6) with culture time. As the culture time increased, the glucose content of the exopolymer extract formed with glucosamine decreased from 55 +/- 3 to 29 +/- 2 mol%, and the molecular weight increased from 2.73 x 10(6) to 4.86 x 10(6). There was no evidence that glucosamine was directly incorporated into exopolymers. The molar ratios of glucose to mannose in exopolymer extracts ranged from 87 +/- 3:13 +/- 3 to 28 +/- 2:72 +/- 2 and were affected by the energy source added. On the basis of the results of an enzyme hydrolysis analysis of the exopolymer extracts and the compositional changes observed, mannose (a repeating unit) was substituted for glucose, which gave rise to a new family of exopolymer analogs.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Maltotriosa, ≥90% (HPLC)