Saltar al contenido
MilliporeSigma

Modeling oxyanion adsorption on ferralic soil, part 2: chromate, selenate, molybdate, and arsenate adsorption.

Environmental toxicology and chemistry (2014-03-22)
Claudio Pérez, Juan Antelo, Sarah Fiol, Florencio Arce
RESUMEN

High levels of oxyanions are found in the soil environment, often as a result of human activity. At high concentrations, oxyanions can be harmful to both humans and wildlife. Information about the interactions between oxyanions and natural samples is essential for understanding the bioavailability, toxicity, and transport of these compounds in the environment. In the present study, the authors investigated the reactivity of different oxyanions (AsO4 , MoO4 , SeO4 , and CrO4 ) at different pH values in 2 horizons of a ferralic soil. By combining available microscopic data on iron oxides with the macroscopic data obtained, the authors were able to use the charge distribution model to accurately describe the adsorption of these 4 oxyanions and thus to determine the surface speciation. The charge distribution model was previously calibrated and evaluated using phosphate adsorption/desorption data. The adsorption behavior on ferralic soil is controlled mainly by the natural iron oxides present, and it is qualitatively analogous to that exhibited by synthetic iron oxides. The highest adsorption was found for arsenate ions, whereas the lowest was found for selenate, with chromate and molybdate ions showing an intermediate behavior.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Molybdenum, powder, <150 μm, 99.9% trace metals basis
Molybdenum, foil, 15mm disks, thickness 0.005mm, 99.9%
Sigma-Aldrich
Molybdenum, powder, 1-5 μm, ≥99.9% trace metals basis
Molybdenum, foil, 25mm disks, thickness 0.0125mm, 99.9%
Molybdenum, rod, 200mm, diameter 6.0mm, centerless ground, 99.9%
Sigma-Aldrich
Molybdenum, foil, thickness 0.025 mm, ≥99.9% trace metals basis
Sigma-Aldrich
Molybdenum, foil, thickness 0.1 mm, ≥99.9% trace metals basis
Sigma-Aldrich
Molybdenum, powder, <150 μm, 99.99% trace metals basis
Sigma-Aldrich
Molybdenum, powder, 10 μm, ≥99.95% trace metals basis
Sigma-Aldrich
Molybdenum, nanopowder, <100 nm particle size (TEM), 99.8% trace metals basis
Sigma-Aldrich
Molybdenum, wire, diam. 1.0 mm, 99.95% trace metals basis
Sigma-Aldrich
Molybdenum, foil, thickness 1.0 mm, ≥99.9% trace metals basis
Molybdenum, pellets, 100g, max. size 10mm, 99.9%
Molybdenum, foil, 150x150mm, thickness 1.0mm, annealed, 99.98%
Molybdenum, foil, light tested, 100x100mm, thickness 0.01mm, 99.9%
Molybdenum, wire, straight, 1000mm, diameter 0.25mm, 99.95%
Molybdenum, pellets, 200g, max. size 10mm, 99.9%
Molybdenum, mesh, 100x100mm, nominal aperture 0.44mm, wire diameter 0.07mm, 50 wires/inch, open area 67%, plain weave mesh
Molybdenum, rod, 50mm, diameter 5.0mm, 99.98%
Molybdenum, pellets, 50g, max. size 10mm, 99.9%
Molybdenum, foil, 1m coil, thickness 0.01mm, 99.9%
Molybdenum, foil, light tested, 50x50mm, thickness 0.01mm, 99.9%
Molybdenum, tube, 50mm, outside diameter 6.4mm, inside diameter 4.6mm, wall thickness 0.9mm, 99.9%
Molybdenum, foil, 100x100mm, thickness 0.5mm, annealed, 99.9%
Molybdenum, rod, 100mm, diameter 2.0mm, centerless ground, 99.9%
Molybdenum, rod, 200mm, diameter 2.0mm, centerless ground, 99.9%
Molybdenum, foil, 100x100mm, thickness 0.30mm, annealed, 99.9%
Molybdenum, foil, 50x50mm, thickness 0.15mm, annealed, 99.9%
Molybdenum, rod, 100mm, diameter 5.0mm, 99.98%
Molybdenum, rod, 200mm, diameter 5.0mm, centerless ground, 99.9%