Saltar al contenido
MilliporeSigma
  • The vesicle-to-micelle transition of phosphatidylcholine vesicles induced by nonionic detergents: effects of sodium chloride, sucrose and urea.

The vesicle-to-micelle transition of phosphatidylcholine vesicles induced by nonionic detergents: effects of sodium chloride, sucrose and urea.

Biochimica et biophysica acta (2000-11-25)
A Walter, G Kuehl, K Barnes, G VanderWaerdt
RESUMEN

The vesicle-to-micelle transition of egg phosphatidylcholine LUVs induced by octylglucoside was studied in buffers with 0-4 M sodium chloride, sucrose or urea. We used both light scattering and fluorescent probes to follow the lipid-detergent complexes in these buffers. The vesicle-to-micelle transition process was fundamentally the same in each solute. However, the detergent-to-lipid ratio required for micelle formation shifted in ways that depended on the aqueous solute. The partitioning of octylglucoside between the vesicles and the aqueous phase was primarily determined by the change in its critical micelle concentration (cmc) induced by each solute. Specifically, the cmc decreased in high salt and sucrose buffers but increased in high concentrations of urea. Cmc for two additional nonionic detergents, decyl- and dodecyl-maltoside, and three zwittergents (3-12, 3-14 and 3-16) were determined as a function of concentration for each of the solutes. In all cases NaCl and sucrose decreased the solubility of the detergents, whereas urea increased their solubilities. The effects clearly depended on acyl chain length in urea-containing solutions, but this dependence was less clear with increasing NaCl and sucrose concentrations. The contributions of these solutes to solubility and to interfacial interactions in the bilayers, pure and mixed micelles are considered.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Cloruro de sodio, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Cloruro de sodio, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Cloruro de sodio, JIS special grade, ≥99.5%
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Cloruro de sodio, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Cloruro de sodio, 99.999% trace metals basis
Sigma-Aldrich
Cloruro de sodio, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Cloruro de sodio, SAJ first grade, ≥99.0%
Sigma-Aldrich
Cloruro de sodio, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Cloruro de sodio, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Supelco
Cloruro de sodio, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Cloruro de sodio, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride solution, 1 M
Sigma-Aldrich
Sodium chloride solution, 0.85%
Supelco
Cloruro de sodio, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
Cloruro de sodio, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
Sodium standard solution, suitable for atomic absorption spectrometry, 1 mg/mL Na, 1000 ppm Na
Sigma-Aldrich
Sodium chloride solution, 0.1 M
Sigma-Aldrich
Cloruro de sodio, tested according to Ph. Eur.
Sigma-Aldrich
Chloride standard solution, 1 mg/mL Cl-
Sigma-Aldrich
Cloruro de sodio, tablet