- Bacterial thymidine kinase as a non-invasive imaging reporter for Mycobacterium tuberculosis in live animals.
Bacterial thymidine kinase as a non-invasive imaging reporter for Mycobacterium tuberculosis in live animals.
Bacteria can be selectively imaged in experimentally-infected animals using exogenously administered 1-(2'deoxy-2'-fluoro-beta-D-arabinofuranosyl)-5-[(125)I]-iodouracil ([(125)I]-FIAU), a nucleoside analog substrate for bacterial thymidine kinase (TK). Our goal was to use this reporter and develop non-invasive methods to detect and localize Mycobacterium tuberculosis. We engineered a M. tuberculosis strain with chromosomally integrated bacterial TK under the control of hsp60 -- a strong constitutive mycobacterial promoter. [(125)I]FIAU uptake, antimicrobial susceptibilities and in vivo growth characteristics were evaluated for this strain. Using single photon emission computed tomography (SPECT), M. tuberculosis P(hsp60) TK strain was evaluated in experimentally-infected BALB/c and C3HeB/FeJ mice using the thigh inoculation or low-dose aerosol infection models. M. tuberculosis P(hsp60) TK strain actively accumulated [(125)I]FIAU in vitro. Growth characteristics of the TK strain and susceptibility to common anti-tuberculous drugs were similar to the wild-type parent strain. M. tuberculosis P(hsp60) TK strain was stable in vivo and SPECT imaging could detect and localize this strain in both animal models tested. We have developed a novel tool for non-invasive assessment of M. tuberculosis in live experimentally-infected animals. This tool will allow real-time pathogenesis studies in animal models of TB and has the potential to simplify preclinical studies and accelerate TB research.