- Characterization of adenosine receptors evoking excitation of mesenteric afferents in the rat.
Characterization of adenosine receptors evoking excitation of mesenteric afferents in the rat.
We examined the effects of adenosine receptor agonists and antagonists on the discharge of mesenteric afferent nerves supplying the jejunum in pentobarbitone sodium-anaesthetized rats. Adenosine (0.03-10 mg kg(-1), i.v.), NECA (0.3-300 microg kg(-1), i.v.) and the A1 receptor agonist, GR79236 (0.3-1000 microg kg(-1), i.v.), each induced dose-dependent increases in afferent nerve activity and intrajejunal pressure, hypotension and bradycardia. The A1 receptor antagonist, DPCPX (3 mg kg(-1), i.v.), antagonized all the effects of GR79236 but only the haemodynamic effects of adenosine and NECA. The A2A receptor antagonist, ZM241385 (3 mg kg(-1), i.v.), antagonized the hypotensive effect of NECA but none of the effects of GR79236. The A2A receptor agonist, CGS21680 (0.3-300 microg kg(-1), i.v.), and the A3 receptor agonist, IB-MECA (0.3-300 microg kg(-1), i.v.), each induced only a dose-dependent hypotension. Subsequent administration of adenosine (3 mg kg(-1), i.v.) induced increases in afferent nerve activity and intrajejunal pressure and bradycardia. ZM241385 (3 mg kg(-1), i.v.) antagonized the hypotensive effect of CGS21680 but not the effects of adenosine. Bethanechol (300 microg kg(-1), i.v.) evoked increases in afferent nerve activity and intrajejunal pressure, hypotension and bradycardia. However, adenosine (3 mg kg(-1), i.v.) evoked greater increases in afferent nerve activity than bethanechol despite inducing smaller increases in intrajejunal pressure. In summary, A1 and A2B and/or A2B-like receptors evoke adenosine-induced increases in mesenteric afferent nerve activity and intrajejunal pressure in the anaesthetized rat. Furthermore, elevations in intrajejunal pressure do not wholly account for adenosine-evoked excitation of mesenteric afferent nerves.