Saltar al contenido
MilliporeSigma

Biochemical pathways of cell damage during the oxygen paradox of the rat heart.

Comparative biochemistry and physiology. Comparative physiology (1993-08-01)
S Daniels, C J Duncan
RESUMEN

1. The standard O2-paradox has been studied in the Langendorff-perfused rat heart. 2. Perfusion of glucose-free saline under anoxia did not cause release of creatine kinase (CK) although, it is suggested, there was a progressive rise in [Ca2+]i. 3. Ca(2+)-depletion after anoxia caused CK release. 4. Prolonged anoxic perfusion (55 min) produced a markedly reduced release of CK on Ca(2+)-depletion because, it is suggested, of the reduction in substrates for the release mechanism. 5. No protection against the O2-paradox was found with oxygen radical scavengers and inhibitors. 6. Lowering [Ca2+]o during reoxygenation to 0.1 mM did not reduce CK release. 7. Neither 1 mM amiloride (Na+/H+ antiporter inhibitor) nor 2 x 10(-6) M 1-(5-isoquinolinesulphonyl) piperazine (protein kinase C inhibitor) reduced CK release, unlike their effects in the Ca(2+)-paradox. 8. An hypothesis for events in the O2-paradox in presented: anoxia causes a loss of Ca(2+)-homeostasis and a rise in [Ca2+]i thereby activating a transmembrane NAD(P) oxido-reductase/diaphorase (stage 1); the return of O2 synergistically activates this molecular complex and causes CK release (stage 2).