Saltar al contenido
MilliporeSigma

Inhibition of Escherichia coli ATP synthase by dietary ginger phenolics.

International journal of biological macromolecules (2021-06-05)
Taurin Hughes, Samiya Azim, Zulfiqar Ahmad
RESUMEN

For centuries, dietary ginger has been known for its antioxidant, anticancer, and antibacterial properties. In the current study, we examined the link between antibacterial properties of 7 dietary ginger phenolics (DGPs)-gingerenone A, 6-gingerol, 8-gingerol, 10-gingerol, paradol, 6-shogaol, and zingerone-and inhibition of bacterial ATP synthase. DGPs caused complete (100%) inhibition of wild-type Escherichia coli membrane-bound F1Fo ATP synthase, but partial and variable (0%-87%) inhibition of phytochemical binding site mutant enzymes αR283D, αE284R, βV265Q, and γT273A. The mutant enzyme ATPase activity was 16-fold to 100-fold lower than that of the wild-type enzyme. The growth of wild-type, null, and mutant strains in the presence of the 7 DGPs were abrogated to variable degrees on limiting glucose and succinate media. DGPs-caused variable inhibitory profiles of wild-type and mutant ATP synthase confirm that residues of α-, β-, and γ-subunits are involved in the formation of phytochemical binding site. The variable degree of growth in the presence of DGPs also indicates the possibility of molecular targets other than ATP synthase. Our results establish that antibacterial properties of DGPs can be linked to the binding and inhibition of bacterial ATP synthase. Therefore, bacterial ATP synthase is a valuable molecular target for DGPs.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
[10]-Gingerol, ≥98% (HPLC)