Saltar al contenido
MilliporeSigma

Indocyanine green matching phantom for fluorescence-guided surgery imaging system characterization and performance assessment.

Journal of biomedical optics (2020-05-23)
Alberto J Ruiz, Mindy Wu, Ethan P M LaRochelle, Dimitris Gorpas, Vasilis Ntziachristos, T Joshua Pfefer, Brian W Pogue
RESUMEN

Expanded use of fluorescence-guided surgery with devices approved for use with indocyanine green (ICG) has led to a range of commercial systems available. There is a compelling need to be able to independently characterize system performance and allow for cross-system comparisons. The goal of this work is to expand on previous proposed fluorescence imaging standard designs to develop a long-term stable phantom that spectrally matches ICG characteristics and utilizes 3D printing technology for incorporating tissue-equivalent materials. A batch of test targets was created to assess ICG concentration sensitivity in the 0.3- to 1000-nM range, tissue-equivalent depth sensitivity down to 6 mm, and spatial resolution with a USAF test chart. Comparisons were completed with a range of systems that have significantly different imaging capabilities and applications, including the Li-Cor® Odyssey, Li-Cor® Pearl, PerkinElmer® Solaris, and Stryker® Spy Elite. Imaging of the ICG-matching phantoms with all four commercially available systems showed the ability to benchmark system performance and allow for cross-system comparisons. The fluorescence tests were able to assess differences in the detectable concentrations of ICG with sensitivity differences >10× for preclinical and clinical systems. Furthermore, the tests successfully assessed system differences in the depth-signal decay rate, as well as resolution performance and image artifacts. The manufacturing variations, photostability, and mechanical design of the tests showed promise in providing long-term stable standards for fluorescence imaging. The presented ICG-matching phantom provides a major step toward standardizing performance characterization and cross-system comparisons for devices approved for use with ICG. The developed hybrid manufacturing platform can incorporate long-term stable fluorescing agents with 3D printed tissue-equivalent material. Further, long-term testing of the phantom and refinements to the manufacturing process are necessary for future implementation as a widely adopted fluorescence imaging standard.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Titanium(IV) oxide, anatase, powder, −325 mesh, ≥99% trace metals basis