Saltar al contenido
MilliporeSigma

Mapping the epigenomic and transcriptomic interplay during memory formation and recall in the hippocampal engram ensemble.

Nature neuroscience (2020-10-07)
Asaf Marco, Hiruy S Meharena, Vishnu Dileep, Ravikiran M Raju, Jose Davila-Velderrain, Amy Letao Zhang, Chinnakkaruppan Adaikkan, Jennie Z Young, Fan Gao, Manolis Kellis, Li-Huei Tsai
RESUMEN

The epigenome and three-dimensional (3D) genomic architecture are emerging as key factors in the dynamic regulation of different transcriptional programs required for neuronal functions. In this study, we used an activity-dependent tagging system in mice to determine the epigenetic state, 3D genome architecture and transcriptional landscape of engram cells over the lifespan of memory formation and recall. Our findings reveal that memory encoding leads to an epigenetic priming event, marked by increased accessibility of enhancers without the corresponding transcriptional changes. Memory consolidation subsequently results in spatial reorganization of large chromatin segments and promoter-enhancer interactions. Finally, with reactivation, engram neurons use a subset of de novo long-range interactions, where primed enhancers are brought in contact with their respective promoters to upregulate genes involved in local protein translation in synaptic compartments. Collectively, our work elucidates the comprehensive transcriptional and epigenomic landscape across the lifespan of memory formation and recall in the hippocampal engram ensemble.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Roche
cOmplete, Mini, conjunto de inhibidores de proteasas sin EDTA, Protease Inhibitor Cocktail Tablets provided in a glass vial, Tablets provided in a glass vial
Sigma-Aldrich
4-hidroxitamoxifeno, ≥70% Z isomer (remainder primarily E-isomer)
Roche
DAPI, 4′,6-Diamidine-2′-phenylindole dihydrochloride