Saltar al contenido
MilliporeSigma

Epigenetic regulation of the circadian gene Per1 contributes to age-related changes in hippocampal memory.

Nature communications (2018-08-22)
Janine L Kwapis, Yasaman Alaghband, Enikö A Kramár, Alberto J López, Annie Vogel Ciernia, André O White, Guanhua Shu, Diane Rhee, Christina M Michael, Emilie Montellier, Yu Liu, Christophe N Magnan, Siwei Chen, Paolo Sassone-Corsi, Pierre Baldi, Dina P Matheos, Marcelo A Wood
RESUMEN

Aging is accompanied by impairments in both circadian rhythmicity and long-term memory. Although it is clear that memory performance is affected by circadian cycling, it is unknown whether age-related disruption of the circadian clock causes impaired hippocampal memory. Here, we show that the repressive histone deacetylase HDAC3 restricts long-term memory, synaptic plasticity, and experience-induced expression of the circadian gene Per1 in the aging hippocampus without affecting rhythmic circadian activity patterns. We also demonstrate that hippocampal Per1 is critical for long-term memory formation. Together, our data challenge the traditional idea that alterations in the core circadian clock drive circadian-related changes in memory formation and instead argue for a more autonomous role for circadian clock gene function in hippocampal cells to gate the likelihood of long-term memory formation.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
ChIPAb+ Acetyl-Histone H4 (Lys8) - ChIP Validated Antibody and Primer Set, serum, from rabbit